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Abstract  

Metal Additive Manufacturing (AM) has been attracting a continuously increasing attention due 

to its great advantages compared to traditional subtractive manufacturing in terms of higher design 

flexibility, shorter development time, lower tooling cost, and fewer production wastes. However, 

the lack of process robustness, stability and repeatability caused by the unsolved complex 

relationships between material properties, product design, process parameters, process signatures, 

post AM processes and product quality has significantly impeded its broad acceptance in the 

industry. To facilitate efficient implementation of advanced data analytics in metal AM, which 

would support the development of intelligent process monitoring, control and optimisation, this 

paper proposes a novel Digital Twin (DT)-enabled collaborative data management framework for 

metal AM systems, where a Cloud DT communicates with distributed Edge DTs in different 

product lifecycle stages. A metal AM product data model that contains a comprehensive list of 

specific product lifecycle data is developed to support the collaborative data management. The 

feasibility and advantages of the proposed framework are validated through the practical 

implementation in a distributed metal AM system developed in the project MANUELA. A 

representative application scenario of cloud-based and deep learning-enabled metal AM layer 

defect analysis is also presented. The proposed DT-enabled collaborative data management has 

shown great potential in enhancing fundamental understanding of metal AM processes, developing 

simulation and prediction models, reducing development times and costs, and improving product 

quality and production efficiency. 
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1. Introduction 

Additive Manufacturing (AM) refers to the technologies used to manufacture objects from 3D 

model data, in which materials are accumulated layer by layer via specific techniques such as 

extrusion, sintering, melting, photopolymerization, jetting, lamination, and deposition [1,2]. AM 

allows the manufacturing of products with complex geometries, heterogeneous materials, and 

customisable material properties [3]. Compared to traditional subtractive manufacturing, AM 

enables higher design flexibility, shorter development time, lower tooling cost, and fewer 

production wastes. The long-term impact of AM is expected in highly customized manufacturing, 

where AM can be more cost-effective than traditional manufacturing [4].  

In recent years, metal AM has been attracting a continuously increasing attention in both academia 

and industry. Currently, there exist various types of metal AM technologies. Based on the 

distinctions of AM processes, the international standard ISO/ASTM 52900:2015 [5] identifies 

seven categories of AM technologies, including 1) powder bed fusion, 2) directed energy 

deposition, 3) material jetting, 4) sheet lamination, 5) material extrusion, 6) binder jetting, and 7) 

vat photopolymerization. With regard to metal AM, the first four technologies can be applied to 

manufacture pure metal parts; the other three can be used to produce metallic composite parts. 

While each technology has its distinct pros and cons, this paper focuses on the most mature and 

widely used metal AM technology, i.e. metal Powder Bed Fusion (PBF). PBF uses laser or electron 

beam to selectively fuse areas of a layer of powders, and then moves the powder bed downwards, 

adding another layer of powders and repeating the process until the part has built up. Commonly 

used metal PBF techniques include Direct Metal Laser Sintering (DMLS), Selective Laser Melting 

(SLM) and Electron Beam Melting (EBM). Compared to traditional subtractive manufacturing 

which has been developed and significantly improved for over two centuries [6], metal AM, which 

was first introduced in the 1990s [7], is relatively new. Though metal AM has shown great potential 

and advantages, many problems still exist that seriously limit its broad acceptance. The highly 

variable product quality (geometry, mechanical properties, physical properties, etc.) and the lack 

of process robustness, stability and repeatability have been recognised as the main barriers for the 

industrial breakthrough of metal AM systems [8]. Identifying the complex relationships between 

material properties, product design, process parameters, process signatures, post AM processes 

and product quality remains a major challenge [4].  

In order to address the aforementioned issues and challenges in metal AM, a prerequisite is to 

collect and analyse the metal AM data from all product lifecycle stages. A typical metal AM 

product lifecycle involves several different stages such as product design, process planning, 

manufacturing, post processing and quality measurement. Each stage generates huge amounts and 

various types of metal AM data that influences the final product quality. Since the development of 

standards and certification for metal AM is still in the early stage, there is an urgent need to develop 

efficient and collaborative data management systems for metal AM. 

Recently, the advancements of Digital Twin (DT) have been extensively studied in the domain of 

manufacturing. The implementation of DT technology in manufacturing systems has shown great 

potential in enabling advanced manufacturing data management. In this context, this paper 

proposes a novel DT-enabled collaborative data management framework for metal AM systems, 
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which comprises a Cloud DT and distributed Edge DTs in different product lifecycle stages. The 

proposed framework allows metal AM data from all product lifecycle stages to be collaboratively 

managed in the cloud, and hence enabling various types of advanced data analytics and product 

quality control to be realised. As a critical component for both data management system and DT, 

a metal AM product data model is developed by identifying and categorising the critical metal AM 

product lifecycle data that has influence on the final product quality. To demonstrate the feasibility 

and advantages of the proposed approach, an early implementation of the DT-enabled 

collaborative data management in a real metal AM system is introduced. A representative 

application scenario enabled by the proposed data management system, i.e. cloud-based and deep 

learning-enabled metal AM layer defect analysis, is also developed and demonstrated. Results 

have shown that the proposed DT-enabled collaborative data management plays an important role 

in enhancing fundamental understanding of metal AM processes, developing simulation and 

prediction models, reducing development times and costs, and improving product quality and 

production efficiency. 

The remaining of this paper is organised as follows. Section 2 reviews the state-of-the-art research 

on data management for metal AM and DT-supported data management and identifies the research 

gaps. Section 3 proposes a conceptual framework of the DT-enabled collaborative data 

management for metal AM systems. Section 4 presents the developed metal AM product data 

model. Section 5 demonstrates the early implementation of the DT-enabled collaborative data 

management in a real metal AM system as well as a representative application scenario. Section 6 

concludes the paper and discusses the future work. 

2. Literature Review 

Current research on metal AM focuses mainly on the material science, processing science and 

process monitoring technologies [9–11]. Data management in the domain of metal AM has not 

been extensively studied due to the relatively short development history of metal AM. On the other 

hand, Digital Twin technology has just gained attention in manufacturing field in the last several 

years. Since this paper proposes a novel DT-enabled data management concept for metal AM, this 

section reviews the related work from two aspects: data management for metal AM and DT-

supported data management in manufacturing. The research gaps are then identified and discussed. 

2.1 Data management for metal AM 

In the context of Industry 4.0 where information and communication technology (ICT) plays a 

vital role, data management becomes a critical issue for any type of manufacturing system. In 

metal AM, it is estimated that PBF systems involve more than 130 variables [12], while over 50 

different process parameters in metal AM processes have influences on the final product quality 

[4,13]. The complex relationships between product design, process parameters, process signatures, 

post AM processes, and product quality present an urgent need for efficient data management in 

metal AM systems. 

Since metal AM data comprises data from various sources in different product lifecycle stages, 

collaborative data management systems are required for metal AM. Müller et al. [14] identified 
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three main requirements for a metal AM product lifecycle data management system: 1) easy 

accessibility of the entire product knowledge, 2) traceability of individual product information, 

and 3) automation of information flow. Aiming to capture, store and manage data through the 

entire metal AM lifecycle and value chain, the National Institute of Standards and Technology 

(NIST) [15,16] developed a collaborative AM data management system using the NoSQL (Not 

Only Structured Query Language) database technology. The cloud-based database is structured by 

an AM data schema which enables meaningful data curation and data retrieval. An ontology-based 

web graphical user interface is developed for the data management system, allowing users to 

perform data curating, exploring, and downloading. The data management system also provides a 

Representational State Transfer (REST) interface for the integration with other applications. 

Uhlmann et al. [17] developed a data management system that can store data from different sources, 

such as the energy system (regarding power consumption), internal machine tool sensors (platform 

temperature, process chamber pressure, etc.), external sensors (microphone) and machine 

controller (process data). Their experimental results have proven that the developed data 

management system enables the analysis of the links between SLM machine status and AM 

process conditions, though it works only in the local environment and there is no data model to 

organise the data from different sources. Müller et al. [14] developed a demonstrator tool as a 

metal AM product lifecycle data management system, where the design, simulation, 

manufacturing, post processing and measurement data of each individual product are stored. 

However, their demonstrator provides only basic database and data visualisation functions without 

data analytics functions. Based on the material data repository named MAPTIS, NASA [18] 

developed a metal AM database that contains various types of metal AM data including build 

parameters, material conditioning, test environment, tensile results, fracture toughness and fatigue. 

They claimed that the developed database serves as the foundation of the metal AM data 

management, which strongly complements the development of standards and protocols for metal 

AM. Mies et al. [19] provided an overview of the current status of AM informatics, in which the 

key technical requirements, the available AM informatics tools and the existing applicable 

solutions have been summarised. They concluded that while metal AM standards and certification 

are in the early development stage, advanced data management for metal AM plays an important 

role in reducing development times and costs and improving product quality and production 

efficiency. 

Data model is considered as the backbone of a data management system, especially in the case of 

metal AM where various types of data from different lifecycle stages are involved. Utilising a 

Product Lifecycle Management (PLM) data modelling method named PPR (product, process and 

resource), Lu et al. [20] proposed a conceptual metal AM integrated data model where the AM 

data are modelled as entities under three categories, i.e. product, process and resource, and the 

fundamental relationships among the entities are defined. Based on the conceptual data model, Lu 

et al. [16] further developed an AM database schema using Unified Modelling Language (UML), 

which was used as the foundation of the metal AM data management system introduced previously. 

To address the data interoperability issue in metal AM, Feng et al. [21,22] developed an activity 

model for structuring process-related PBF data, by decomposing the entire PBF process (including 

design, process planning, fabrication, inspection and quality control) into specific activities and 
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identifying the inputs, outputs, mechanisms and controls of each activity. Later, Kim et al. [23] 

developed AM data models in the form of data packages (in XML format) upon the activity model. 

Three case studies have been conducted to demonstrate how the data models improved data 

manageability, traceability and accountability in the metal AM processes. Based on the object-

oriented modelling method, Bonnard et al. [24] proposed a new AM digital chain model named 

Hierarchical Object-Oriented Model (HOOM), which comprises seven levels corresponding to 

seven stages of the AM process from product design to post-production and validation. The model 

was implemented in a STEP-NC platform and tested through the manufacture of two parts. Their 

experimental results proved that the proposed AM model improves transparency, interoperability 

and scalability of the AM project data. Qin et al. [2] provided a comprehensive review of the 

existing representations of AM data. The data modelling strategies are categorised into six methods: 

STEP standards, coding system method, digital thread method, integrated data schema method, 

unified storage file format and relational database method. Comparisons among the different 

strategies were conducted in terms of the coverage, simplicity, interoperability, extensibility, 

inspectibility, accessibility and application. 

2.2 Digital Twin-supported data management in manufacturing 

Recently, the Digital Twin concept has attracted great research interests in the domain of 

manufacturing. DT is considered as a key enabling technology for the envisioned Cyber-Physical 

Production Systems, Smart Factory and smart manufacturing systems in the context of Industry 

4.0 [25–29]. The potential of utilising DT to improve product design [30], manufacturing processes 

[31], process monitoring [32,33], Prognostics and Health Management (PHM) [34,35], production 

management [36] and PLM [37,38] has been extensively discussed and studied. 

It has been identified that currently, some problems in manufacturing systems have impeded the 

development of efficient data management systems, including: 1) information islands between 

different phases of product lifecycle caused by various data types and tasks of different product 

lifecycle phases; 2) data waste and sharing problems due to duplicate data in different product 

lifecycle phases; and 3) the absence of interaction and iteration between advanced data analytics 

and various activities in the entire product lifecycle [26].  

To overcome these problems, recent advancements in DT technology have shown great potential 

and advantages in the form of DT-supported product/manufacturing data management. In a 

comprehensive review on the development methods for DT, the enabling technologies and tools 

for DT data management have been investigated in six categories, including data collection, data 

transmission, data storage, data processing, data fusion, and data visualisation [39]. 

Applications of DT-supported data management for manufacturing systems have been widely 

reported. Lu and Xu [40] proposed a DT-driven approach to enabling cloud-based manufacturing 

equipment and big data analytics. A DT for a roll forming machine, which mirrors its near real-

time status in the shop floor, was developed in the cloud to support various types of cloud-based 

data analytics such as machine status monitoring and production reporting. Based on data 

modelling methods provided by the open communication standards MTConnect and OPC UA, Liu 

et al. [41] developed DTs for CNC machine tools. The DTs enable an interoperable data 
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management environment where data from different types of CNC controllers and sensors can be 

efficiently managed, visualised and analysed. Cheng et al. [42] proposed a digital twin enhanced 

Industrial Internet (DT-II) reference framework towards smart manufacturing. Taking the 

production of a steam turbine as an example, the authors claim that DT enables the interaction and 

convergence between physical and virtual product, and hence shortens production preparation time 

and production period, reduces production cost, and improves production efficiency and 

processing quality. Wang et al. [43] developed a shop-floor DT that reflects real-time production 

status in the shop floor. Advanced data analytics functions were integrated in the DT to analyse 

the key production performance indicators and predict the remaining processing time of work-in-

processes.  

In the context of Smart Manufacturing and Industry 4.0, data management is closely correlated 

with PLM and PHM [44,45]. Applications of DT-supported PLM and PHM have also been 

extensively developed. Kaewunruen et al. [46] developed a DT-enabled lifecycle management 

system for railway turnout systems using the Building Information Modelling (BIM) technology. 

Data from different lifecycle stages of the railway turnout system was integrated into a 6D model, 

such that various lifecycle management functions (visualisation of product design/material/ 

component/project/schedule information, cost prediction and carbon foot-print estimation) were 

realised in a big data sharing platform. Wang and Wang [31] developed a DT-based system for the 

waste electrical and electronic equipment (WEEE) recovery to support the manufacturing/ 

remanufacturing operations throughout the product’s lifecycle, from design to recovery. 

International standard-complaint data models were developed to support the DT-based PLM with 

high data interoperability. Aiming to improve the process planning for optimized machining 

solutions, Botkina et al. [38] developed a digital twin of a cutting tool that could represent the 

properties of the cutting tool and perform precise process simulation, control and analysis. The 

data format and structure of the digital twin are based on the international standard ISO 13399 

(Cutting tool data representation and exchange). Zheng and Sivabalan [47] proposed a novel tri-

model-based approach for product-level DT development. A DT of a 3D printer that works 

concurrently to simulate real-world physical behavior and characteristics of the digital model was 

developed.  

2.3 Research gaps 

The literature review has revealed several research gaps. First, few studies have been conducted 

on data management for metal AM systems. There is a lack of collaborative data management 

systems for metal AM. Second, the literature review shows that data model is critical for both data 

management system and DT. However, there is a lack of a metal AM product data model which 

contains a comprehensive list of specific data that has influence on the product quality. Third, the 

data communication between the field-level data sources and the data management system has 

been rarely studied in the domain of metal AM. Furthermore, though there has been a considerable 

amount of literature on DT in manufacturing field, in the domain metal AM, very few studies (e.g. 

[48,49]) have applied the DT concept, and they all focus on the metal AM processes instead of 

data management. 
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This paper attempts to bridge these research gaps by proposing a novel DT-enabled collaborative 

data management framework for Metal AM. A metal AM product data model is developed by 

identifying and categorising the critical metal AM data in different product lifecycle stages. Early 

implementation of the proposed framework in a real metal AM system developed in the project 

MANUELA is conducted. Cloud-based and deep learning-enabled metal AM layer defect analysis 

is also demonstrated as a representative application scenario. 

3. Conceptual framework of the Digital Twin-enabled collaborative data 

management for metal AM systems 

Broadly, DT refers to an integrated multi-physics, multi-scale, probabilistic simulation of a 

complex product and uses the best available physical models, sensor updates, etc., to mirror the 

life of its corresponding twin [50]. Based on different types of physical objects and their functional 

requirements, the DT of a specific object may be defined in different ways. For example, 

Mukherjee and DebRoy [48] defined the DT of 3D printing hardware as an integration of a 

mechanistic model, a sensing and control model, a statistical model, big data and machine learning 

that can potentially improve part quality and shorten time between the design and production; 

while Knapp et al. [49] claimed that a DT of the AM process should provide accurate predictions 

of the spatial and temporal variations of metallurgical parameters that affect the structure and 

properties of components. 

In this work, focusing specifically on data management for metal AM systems, we propose a novel 

DT-enabled collaborative data management system that comprises a Cloud DT and distributed 

Edge DTs in different product lifecycle stages. This section introduces the concepts of Cloud DT 

and Edge DT and proposes a conceptual framework of DT-enabled data management for Metal 

AM systems. 

3.1 Cloud Digital Twin and Edge Digital Twin  

The collaborative data management system needs to manage data generated in all product lifecycle 

stages in metal AM. Different stages contain different types of devices and software tools and 

perform different tasks. Each stage may generate a huge amount of raw data (e.g. sensor signals) 

that needs to be processed locally. Hence, it is inefficient or even not possible to transfer all the 

field-level data to the cloud to build a DT of the metal AM product. Inspired by the implementation 

of cloud computing [51], edge computing [52] and fog computing [53] in manufacturing systems, 

we propose the concepts of Cloud Digital Twin and Edge Digital Twin that communicate with 

each other to enable a collaborative data management system.  

In general, the Edge DTs focus on specific computing tasks of different product lifecycle stages 

locally and transfer the processed data to the Cloud DT; while the Cloud DT stores all the product 

lifecycle data in the cloud and provides data access as well as advanced data analytics to different 

users and applications. The definitions and main functions of Edge DT and Cloud DT are explained 

as follows: 

https://doi.org/10.1016/j.jmsy.2020.05.010


______________________________________________________________________________ 

Liu, C., Le Roux, L., Körner, C., Tabaste, O., Lacan, F., & Bigot, S. (2020). Digital Twin-enabled Collaborative Data 

Management for Metal Additive Manufacturing Systems. Journal of Manufacturing Systems, 

https://doi.org/10.1016/j.jmsy.2020.05.010 

• Edge DT: An Edge DT is a DT of a specific product lifecycle stage which resides in a 

distributed shop floor and focuses only on the functions of that lifecycle stage. The Edge 

DTs have their own computing power (or local intelligence) to support various types of 

local real-time data processing tasks such as machine control, process monitoring, in-

process optimisation, simulation and prediction. The Edge DTs store the raw data of a 

product lifecycle stage in local databases and transfer the processed data which has 

influence on the product quality to the Cloud DT through the Internet, thus enabling 

efficient data communication by reducing the data traffic between shop floors and the cloud. 

• Cloud DT: The Cloud DT collects all the product lifecycle data from the Edge DTs and 

records it in the cloud database which is structured by a metal AM product data model. It 

resides in the cloud and communicates with the Edge DTs as well as different users to 

allow collaborative data management for metal AM systems. Advanced data analytics are 

integrated in the Cloud DT to support analysing the relationships among the various 

historical product lifecycle data. Application interfaces are also embedded in the Cloud DT 

such that other applications can take advantage of the product lifecycle data. 

3.2 Conceptual framework 

The main objective of the Cloud DT and Edge DT is to support collaborative data management for 

metal AM. To provide guidance for practical development and implementation, we propose a 

conceptual framework of DT-enabled collaborative data management for metal AM systems, as 

shown in Figure 1. The conceptual framework comprises six modules, i.e. a cloud-based 

collaborative data management platform and five product lifecycle stages, including product 

design, process planning, manufacturing, post processing and quality measurement. Each product 

lifecycle stage has an Edge DT that performs specific computing tasks to support its users and 

communicates with the Cloud DT to establish the collaborative data management for metal AM 

systems.  
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Figure 1. Conceptual framework of DT-enabled collaborative data management for metal AM 

In product design stage, the Edge DT supports the product designers to design the metal AM 

product and perform CAE simulations with CAD and CAE software. The design files and 

simulation results are transferred to the Cloud DT to be recorded and shared. The Edge DT can 

also retrieve other data such as product quality data from the Cloud DT to aid the product designers 

in design optimisation. 

In process planning stage, the Edge DT supports the process planners to generate support structures 

and conduct process planning (model slicing, selection of position, orientation, scan strategy, 

process parameters, etc.), process simulation and process optimisation. The process plans, process 

parameters and simulation results are transferred to the Cloud DT. 

In manufacturing stage, the Edge DT focuses on the AM building processes of a specific metal 

AM product and performs various types of data processing tasks such as process monitoring and 

control, in-process optimisation, machine learning model training and real-time decision-making 

support. The monitored process signatures (machine logs, sensor signals, images, etc.) are 

processed locally and the results are transferred to the Cloud DT. The raw data which is usually 

large in size is stored in the local database for further analysis. 
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In post processing stage, the Edge DT performs similar functions as in the manufacturing stage. 

Various types of post AM processes are monitored, controlled and optimised with local computing 

power. Process signatures and results are processes and transferred to the Cloud DT, while the raw 

data is stored in local database. 

In quality measurement stage, the Edge DT retrieves the measurement tasks and product design 

files from the Cloud DT and supports the machine operators to measure the product qualities, 

analyse the measured results and generate measurement reports. The processed product quality 

data is then transferred to the Cloud DT. 

In the collaborative data management platform, the Cloud DT collects all the product lifecycle 

data from the Edge DTs and stores it in the cloud database structured by a metal AM product data 

model. Different users (data analysts, project managers, customers, etc.) can access the Cloud DT 

through the Internet to collectively manage the metal AM product data. Various types of functions 

such as project management, production planning, progress monitoring, advanced data analytics 

can be developed to improve the product quality and the production efficiency. 

It is worth mentioning that this framework focuses on the metal AM product quality and its related 

production processes, though a full product lifecycle may also include product usage stage and 

end-of-life treatment stage [54]. Furthermore, the proposed conceptual framework can also be used 

as a generic reference framework for developing collaborative data management for other types of 

manufacturing systems.  

4. Metal AM product data model  

Data model is a critical element for both DTs and data management systems. The proposed DT-

enabled collaborative data management system requires a data model as the underlying database 

structure in the Cloud DT which can organise the data acquired from all the Edge DTs of different 

product lifecycle stages in a clear and logical manner, such that advanced data analytics can be 

efficiently applied to analyse the complex relationships among the product lifecycle data.  

In this work, we propose a metal AM product data model by identifying and categorising the 

critical metal AM product lifecycle data that has influence on the final product quality, based on a 

review of existing literature as well as experts’ knowledge. To ensure the data model can be easily 

implemented in the data management system, a product-centric and object-oriented modelling 

strategy is utilised.  

The structure of the proposed data model is shown in Figure 2. The data model is developed as a 

tree structure. The highest-level root element represents a metal AM product which contains five 

categories of data (design parameters, process parameters, process signatures, post processing 

parameters and product quality), divided based on the five product lifecycle stages mentioned in 

the conceptual framework (Figure 1). Each category contains several sub-categories representing 

different aspects of that category. Finally, each sub-category contains a comprehensive set of 

specific critical metal AM data. The details of the critical data in each category are listed and 

explained in the following subsections. 
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Figure 2. Structure of the metal AM product data model 

4.1 Design parameters 

Design parameters refer to the product design parameters that are defined in the product design 

stage. Design parameters can only be modified at the design stage before manufacturing processes. 

The critical data of the design parameters include two sub-categories: 1) design features, and 2) 

build preparation.  

Design parameters have a significant influence on the product quality, especially in metal AM 

processes where inappropriate designs can directly lead to build failures and damage to machine 

components. The data items of design parameters, along with their description and data format, 

are listed in Table 1.  

 

Table 1. Data items of design parameters in the data model 

Sub-category Data item Description Data format 

Design 

Features 

CAD file CAD file of the designed product CAD file 

Part Material Material of the product string 

Part Volume (cm3) Volume of the designed part number 

Minimum Feature Size (mm) Minimum feature size of the product in x, y, z axis number 

Surface Roughness Required surface roughness number 

Tolerances Required dimensional and geometric tolerances CAD file 

Build 

Preparation 

Supports Designed support structure CAD file 

Build Position Designed build position of the part on the powder bed number 

Build Orientation Designed build orientation CAD file 
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4.2 Process parameters 

Process parameters refer to the ‘input’ parameters for the manufacturing processes in metal AM. 

They determine the rate of laser/electron beam energy delivered to the powder bed surface and 

how that energy interacts with the powders. Based on different components involved in the 

manufacturing process, the critical data of the process parameters is categorised into four sub-

categories: 1) laser/beam and scanning parameters, 2) powder material properties, 3) powder bed 

properties and recoating parameters, and 4) build environment parameters.  

The controllability of process parameters is critical for metal AM process monitoring, control and 

optimization. Process parameters can be characterised as either predefined or controllable. 

Predefined parameters are set before each build and cannot be modified during printing; while 

controllable parameters are possible to be continuously tuned during printing. It is noted that 

different machine manufacturers may provide users with different levels of access rights to control 

the process parameters during the build. Based on some previous summaries [55,56], Table 2 lists 

the data items of process parameters in the data model, including their description, controllability 

and data format. 

Table 2. Data items of process parameters in the data model 

Sub-

category 

Data item Description Data 

Format 

Control-

ability 

Laser/Beam 

and 

Scanning 

Parameters 

Laser/Beam Type The type of the laser/beam string Predefined 

Laser/Beam Mode Continuous wave or pulsed string Predefined 

Spot Diameter (μm) Diameter of the laser/beam spot number Predefined 

Wavelength (μm) Laser/beam wavelength number Predefined 

Beam Quality Factor The degree of variation of a beam from an 

ideal Gaussian beam 

number Predefined 

Pulse Frequency (Hz) Pulses per unit time (in pulsed mode) number Predefined 

Pulse Width (μm) Length of a laser pulse (in pulsed mode) number Predefined 

Peak Power (W) Maximum power in a laser pulse (in pulsed 

mode) 

number Predefined 

Laser/Beam Power (W) Power of the laser/beam number Controllable 

Scan Speed (m/s) Velocity at which the laser/beam moves 

across the build surface 

number Controllable 

Hatch Spacing (μm) Distance between the centres of two adjacent 

scan paths 

number Controllable 

Scan Pattern Pattern in which the laser/beam is scanned 

across the build surface  

CAM 

file 

Controllable 

Powder 

Material 

Properties 

Powder Material Material of the powder  string Predefined 

Material Thermal 

Conductivity (Wm-1
K-1) 

Measure of material’s ability to conduct heat number Predefined 

Material Specific Heat 

Capacity (JK-1
kg-1) 

Measure of energy required to raise the 

temperature of the material 

number Predefined 

Material Melting 

Temperature (°C) 

Temperature at which the material melts number Predefined 

Chemical Composition Measured powder chemical composition  file (txt) Predefined 

Impurity Element Characterization of material impurity  string Predefined 

Max Allowed Impurity 

Concentration (wt%) 

The controlled impurity concentration number Predefined 
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Phase Composition X-ray diffractogram image Predefined 

Particle Morphology SEM images of powder image Predefined 

Particle Sphericity Measure of how closely the shape of an 

object resembles that of a perfect sphere 

number Predefined 

Particle Aspect Ratio Measure of roundness of the particle number Predefined 

Particle Surface Roughness Measure of surface roughness of the particle number Predefined 

Particle Presence of Defect The presence of defects in particles (Y/N) string Predefined 

Particle Inhomogeneity The homogeneity of particles (Y/N) string  Predefined 

Particle Size Distribution Particle size distribution plot image Predefined 

Powder Apparent Density 

(g/cm3) 

Apparent density of the powder number Predefined 

Powder Tap Density 

(g/cm3) 

Tapped density of the powder number Predefined 

Powder Cohesive Force 

Index 

Plot of flowability as a function of rotating 

drum speed 

image Predefined 

Powder Hausner Ratio Hausner ratio from packing dynamic 

measurements 

number Predefined 

Powder Bed 

Properties 

and 

Recoating 

Parameters 

Density (g/cm3) Measure of packing density of powder 

particles 

number Predefined 

Thermal Conductivity 

(Wm-1
K-1) 

Measure of powder bed’s ability to conduct 

heat 

number Predefined 

Heat Capacity (J/K) Measure of energy required to raise the 

temperature of the powder bed 

number Predefined 

Absorptivity (Lmol-1
cm-1) Measure of absorbed laser energy  number Predefined 

Emissivity  Ratio of energy radiated to that of black body  number Predefined 

Recoater Type Type and mechanism of the recoating system string Predefined 

Recoater Speed (mm/s) Velocity at which the recoater moves during 

recoating 

number Controllable 

Dosing per Layer (%) Dosing of powders during recoating number Controllable 

Layer Thickness (μm) Height of a single powder layer number Controllable 

Powder Bed Preheating 

Temperature (°C) 

Preheating (bulk) temperature of the powder 

bed 

number Controllable 

Build 

Environment 

parameters 

Type of Shield Gas Argon, Nitrogen, Helium, etc. string Predefined 

Shield Gas Molecular 

Weight (g/mol) 

Molecular weight of shield gas number Predefined 

Shield Gas Viscosity (Pas) Viscosity of shield gas number Predefined 

Shield Gas Thermal 

Conductivity (Wm-1
K-1) 

Thermal conductivity of shield gas number Predefined 

Shield Gas Heat Capacity 

(J/K) 

Heat capacity of shield gas number Predefined 

Convective Heat Transfer 

Coefficient 

Convective cooling of just melted part by gas 

flowing over the surface 

number Predefined 

Surface Free Energy 

(mJ/m2) 

Surface free energy between melted powders 

and shield gas 

number Predefined 

Build Plate Material Material of the build plate string Predefined 

Build Plate Thickness Thickness of the build plate number Predefined 

Oxygen Level (%) Percentage of Oxygen in the build chamber number Controllable 

Pressure (kPa) Pressure in the build chamber number Controllable 

Gas Flow Velocity (m3/s) Gas flow velocity in the build chamber number Controllable 

Ambient Temperature (°C) Ambient temperature in the build chamber number Controllable 
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4.3 Process signatures 

Process signatures refer to the dynamic characteristics of the powder heating, melting and 

solidification processes occurred during the build. Unlike process parameters that can be directly 

set or controlled, process signatures reflect the dynamic processing results that can only be 

controlled indirectly by modifying the process parameters. Based on different scopes of the 

signatures, the critical data of the process signatures is categorised into five sub-categories: 1) melt 

pool, 2) by-products, 3) single track, 4) single layer, and 5) powder bed. 

Measurement of process signatures is critical for process and product quality improvement. The 

sample rate required for measuring a process signature directly determines the feasibility, cost and 

efficiency of the metal AM process monitoring and optimisation. Based on a literature review on 

process monitoring of metal AM, the required sample rates of the process signatures are 

summarised. Table 3 lists the data items of process signatures in the data model, including their 

description, required sample rate and data format. 

Table 3. Data items of process signatures in the data model 

Sub-

category 

Data item Description Sample rate Data 

Format 

Melt Pool Melt Pool 

Temperature 

Temperature signatures of melt pool (maximum 

temperature, gradient temperature, etc.) 

> 10 kHz signal file/ 

image 

Melt Pool Geometry Geometry signatures of melt pool (width, length, 

depth, shape, area, intensity, etc.) 

> 10 kHz signal file/ 

image 

By-products Plume Signature Signatures of plume (plume consists of metal vapor 

and plasma) 

50 Hz to 5 

kHz 

image 

Spatter Signature Signatures of spatter (spatter comes from vapor jets 

and bubbles, generated by the ablation pressure to 

the vapor on the melt pool surface) 

50 Hz to 5 

kHz 

image 

Acoustic Emission Acoustic emission in the build chamber > 100 kHz signal file 

Single 

Track 

Track Width Width of a single track ex-situ image 

Track Continuity Continuity of a single track ex-situ image 

Track Depth Depth of a single track ex-situ image 

Track Overlap Overlap between two adjacent tracks ex-situ image 

Track Microcracks Microcracks in a single track > 50 kHz image 

Track Consolidation 

Characteristics 

Consolidation characteristics of a single track, such 

as continuous, discontinuous, weak, ball-shaped, 

very little consolidations. 

> 10 kHz image 

Single 

Layer 

Melt Pool Intensity 

Variation 

Melt pool intensity variation across a single layer > 10 kHz image 

Layer Surface 

Topography 

Topography of a single layer (layer geometry, 

height, waviness, roughness etc.) 

per layer to 70 

kHz 

signal file/ 

image 

Layer/Powder Bed 

Surface Temperature 

Temperatures of layer surface per layer to > 

10 kHz 

signal file/ 

image 

Layer Defects Layerwise defects (porosity, uneven, under-melt, 

over-melt, etc.) 

per layer image 

Powder Bed Powder Bed Surface 

Topography 

Surface topography of the powder bed per layer image 

https://doi.org/10.1016/j.jmsy.2020.05.010


______________________________________________________________________________ 

Liu, C., Le Roux, L., Körner, C., Tabaste, O., Lacan, F., & Bigot, S. (2020). Digital Twin-enabled Collaborative Data 

Management for Metal Additive Manufacturing Systems. Journal of Manufacturing Systems, 

https://doi.org/10.1016/j.jmsy.2020.05.010 

Powder Bed 

Anomalies 

Various types of powder bed anomalies (recoater 

hopping, recoater streaking, debris, super-elevation, 

part failure, incomplete spreading, etc.) 

per layer image 

 

4.4 Post processing parameters 

Post processing parameters refer to the designed post processes and their related process 

parameters. Post processing is an optional process depending on specific requirements. There exist 

various types of post processing technologies that can be generally divided into four sub-categories: 

1) powder removal, 2) heat treatment, 3) post machining, and 4) non-standard processes. Table 4 

lists the data items of post processing parameters in the data model, including their description and 

data format. 

Table 4. Data items of post processing parameters in the data model 

Sub-category Data item Description Data Format 

Powder Removal Vibration Setting Machine vibration settings string 

 Rotational Setting Machine rotational settings file (txt) 

 Time (min) Time of the removal process number 

Heat Treatment Heat Treatment Sequence Sequence of heat treatment steps for a single component file (txt) 

Technique The heat treatment technique used (e.g. annealing, 

quenching, case hardening) 

string 

Atmosphere Media (nitrogen, argon etc.) and pressure string 

Heating Rate (K/min) Heating rate number 

Final Temperature (°C) Final temperature number 

Holding Time (h) Holding time at final temperature in hours number 

Cooling Rate (K/min) Cooling rate number 

Cooling Medium Air, Nitrogen, Argon, Water, etc. string 

Post Machining Machining Operation Milling, drilling, fly cutting, grinding, turning, shaping, 

slotting, planning etc. 

string 

Process Plan Process plan of the machining operation, including the 

machining strategy, tool path plan, G code, and all 

process parameters such as cutting speed (m/min), feed 

rate (mm/min), depth of cut (mm), etc. 

CAM file 

Tool Geometry Specification of cutting tool geometry. CAD file  

Tool Material Specification of cutting tool material. string 

Non-standard 

Processes 

Process Name For example, painting, etching, plasma treatment etc. string 

Process Specification A description of the non-standard processes and process 

parameters used. 

file (txt) 

 

4.5 Product quality 

Product quality refers to the final quality of the metal AM product. It is the joint results of all the 

other critical data introduced previously. Product quality can be categorised into four sub-

categories: 1) geometry and dimension, 2) surface quality, 3) physical properties, and 4) 

mechanical properties. Accurate and efficient measurement of the product quality is critical for 

product quality control, design optimisation and process optimization. Commonly used 

measurement devices/methods for each data item are summarised from literature. Table 5 lists the 
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data items of product quality in the data model, including their common measurement 

devices/methods and data format. 

Table 5. Data items of product quality in the data model 

Sub-category Data item Common measurement devices/methods  Data Format 

Geometry and 

Dimension 

Dimensional Accuracy CT dimensional metrology; coordinate 

measuring machine (CMM); 3D laser scanner 

measurement reports 

(PDF, CSV, XLS) 

Geometric Accuracy CT dimensional metrology; CMM; 3D laser 

scanner 

measurement reports 

(PDF, CSV, XLS) 

Surface 

Quality 

Surface Roughness (μm) Contact/optical surface profilometers number; profile graphs 

Surface Waviness (μm) Contact/optical surface profilometers number; profile graphs 

Surface Deformation (μm) Contact/optical surface profilometers number; profile graphs 

Surface Chemical 

composition 

X-ray photoelectron spectroscopy; scanning 

electron microscopy 

report (image, table) 

Physical 

Properties 

Part Density (g/cm3) Archimedes drainage method; Gas pycnometry; 

Microscopy of cross-sections; X-ray scanning of 

cross-sections  

number 

Part Porosity Archimedes method; gas pycnometry; 

microscopic analysis of cross-sections; X-ray CT 

CT scan images; 3D 

model (STL) 

Residual Stress (MPa) Diffraction based methods; Mechanical strain 

relaxation-based methods  

number/report 

Cracks and Delamination Camera; Visual observation image 

Part Microstructures SEM, transmission electron microscopy (TEM) image 

Mechanical 

Properties 

Yield Strength (N/m2) Tensile tests based on standards number 

Tensile Strength (N/m2) Tensile tests based on standards number 

Elongation (%) Tensile tests based on standards number 

Fatigue  Fatigue tests based on standards report 

Hardness (kgf/mm2) Rockwell/Brinell/Vickers/Knoop hardness 

testing; Instrumented Indentation Testing 

number 

Toughness (J/m3) Fracture Toughness Testing number 

 

4.6 Summary 

The features and advantages of the proposed metal AM product data model are summarised as 

follows: 

• The data model contains a comprehensive set of specific metal AM product data and 

divides them into five categories corresponding to five product lifecycle stages, thus 

allowing collaborative data management and advanced data analytics to be realised 

efficiently. 

• The data model is designed to be product-centric and object-oriented. Each specific metal 

AM product can be generated as a new instance based on the data model, which contains 

only the product-specific data while omitting the data items that are not of interest or not 

available. 

• The data model allows data of different formats to be stored, including number, string, 

CAD file, CAM file, image, signal file, reports, and so on. Database developed based on 
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this data model needs to be able to store data in different formats. For large data sets such 

as stacks of images, a link to another database could be stored under the data item. 

• The data model can be easily extended by adding additional data items or sub-categories 

into their related categories. 

• Implementation of the data model in databases or data management systems is flexible due 

to its simple hierarchical structure.  

5. Early implementation of DT-enabled collaborative data management in 

MANUELA metal AM system 

To demonstrate the feasibility and advantages of the proposed approach, this section introduces an 

early implementation of DT-enabled collaborative data management in a metal AM system 

established under the European Union’s H2020 project MANUELA, which involves 20 partner 

organisations from both research institutions and industrial companies. The goal of MANUELA 

is the development of a metal AM pilot line service covering the full AM development cycle 

including simulation, robust AM manufacturing and on-line process control, characterization, real-

time feedback, post-treatment, AM qualification protocols and associated business model. 

MANUELA contains all the five product lifecycle stages described in the conceptual framework. 

However, the shop floors and hardware equipment are geographically distributed in several 

countries in Europe. Thus, to realise collaborative data management among all partners throughout 

the product lifecycle, the DT-enabled collaborative data management is implemented in 

MANUELA metal AM system in an early stage. 

First, the system architecture of the DT-enabled collaborative data management in MANUELA is 

introduced. Detailed data communications in each product lifecycle stage are explained. Examples 

of early implementations are also demonstrated. Second, a representative application scenario of 

the collaborative data management system, i.e. cloud-based and deep learning-enabled layer defect 

analysis, is presented. 

5.1 System architecture and early implementations 

The conceptual framework proposed in Section 3.2 describes the general functions and high-level 

data communication structures. To implement the DT-enabled collaborative data management in 

a real metal AM system, specific data communication and storage strategies in the field level must 

be developed correspondingly to establish the connections among the field-level data, the Edge 

DTs, the Cloud DT as well as different users. Based on the shop floors and hardware equipment 

involved in MANUELA, the overall system architecture of the DT-enabled collaborative data 

management in MANUELA metal AM system is developed as shown in Figure 3. 
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Figure 3. Overall system architecture of DT-enabled collaborative data management in MANUELA 

The system comprises five main modules: 1) Dashboard, 2) Dashboard Users, 3) Pilot Line, 4) 

Post AM, and 5) Quality Measurement. In correspondence with the conceptual framework (Figure 

1), the Dashboard module represents the cloud-based collaborative data management platform. 

The Dashboard Users module represents different users who utilise software tools and local 

intelligence of their Edge DTs to collaboratively manage the metal AM product lifecycle data in 

the cloud. The product design and process planning stages described in the conceptual framework 

are integrated in the Dashboard Users module since they do not directly work on the field-level 

manufacturing equipment. The other three modules, i.e. Pilot Line, Post AM and Quality 

Measurement, are respectively corresponding to the manufacturing stage, post processing stage 

and quality measurement stage in the metal AM product lifecycle. The following sub-sections 

explain the detailed functions and data communications in each module. 

5.1.1 Dashboard and Dashboard Users 

The Dashboard resides in the cloud and communicates with Dashboard Users through the Internet 

to achieve collaborative data management in MANUELA. Figure 4 illustrates the main functions 
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and tasks of the Dashboard and different Dashboard Users. The Dashboard provides five main 

functions as follows: 

1) The Dashboard provides a Graphical User Interface (GUI) that allows efficient data 

management and data visualisation. Customised GUIs are developed for different users 

based on specific requirements. 

2) An interactive metal AM workflow is designed in the Dashboard for each product/project 

by the project managers. The workflow, based on the product lifecycle stages, defines the 

specific tasks and access rights for each type of Dashboard Users to establish a safe and 

collaborative project management platform. 

3) The Dashboard contains a cloud-based relational database which is structured by the metal 

AM product data model introduced in Section 4. This database stores all the product 

lifecycle data retrieved from the Edge DTs. 

4) Advanced data analytics tools can be embedded in the Dashboard to provide cloud-based 

decision-making support, such as analysis of material-geometry-process-property 

relationships and non-real-time product quality control. 

5) The Dashboard also provides application interfaces for a wide range of software 

(CAD/CAM/CAE software, data visualisation and analytics software, etc.) that allow 

different Dashboard Users to perform various types of specialised data analysis. 

There are mainly six types of Dashboard Users, including 1) product designers, 2) process planners, 

3) production planners, 4) project managers, 5) data analysts, and 6) customers. These users utilise 

the local intelligence of their Edge DTs to perform their tasks and interact with the Dashboard 

through the Internet. The main tasks of each type of Dashboard Users are summarised in Figure 4. 

 

 

Figure 4. Main functions of Dashboard and Dashboard Users 

The Dashboard application for MANUELA project is developed using MSC’s product lifecycle 

management software named MaterialCenter. MaterialCenter perfectly meets the requirements of 

the proposed DT-enabled collaborative data management since it provides flexible and efficient 

https://doi.org/10.1016/j.jmsy.2020.05.010


______________________________________________________________________________ 

Liu, C., Le Roux, L., Körner, C., Tabaste, O., Lacan, F., & Bigot, S. (2020). Digital Twin-enabled Collaborative Data 

Management for Metal Additive Manufacturing Systems. Journal of Manufacturing Systems, 

https://doi.org/10.1016/j.jmsy.2020.05.010 

functions for 1) developing customised Graphical User Interfaces (GUIs) and databases, 2) 

integrating customised data analytics functions, and 3) interfacing with external software 

applications. In addition, MaterialCenter allows secure cloud-based collaborative data 

management by granting different administration rights to different users. 

The database in the Dashboard is developed based on the metal AM product data model introduced 

in Section 4. XML schema files are developed for MaterialCenter to define the structure as well 

as the name, data type, description and properties of each individual data item of the database. The 

Dashboard allows users to upload data to the database in two manners, i.e. manual input and bulk 

upload. Figure 5 shows the developed Dashboard GUI for manual data input where users can input 

values or files to each individual data item in the database.  

 

 

Figure 5. Manual data input using the Dashboard 

The GUIs and procedures for bulk data upload using the Dashboard are described in Figure 6. A 

template Excel file that contains all the data items in the database is developed as shown in the 

bottom of Figure 6. An XML mapping schema is developed for mapping all the data in the template 

Excel file to the database through the MaterialCenter plugin in Excel software. In the Dashboard 

GUI, the user chooses the Excel file to be imported and the mapping schema to perform the bulk 

data upload. In this way, various types of field-level manufacturing data can be uploaded to the 
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cloud database, and hence enabling efficient and collaborative metal AM product data 

management. 

 

Figure 6. Bulk data upload using the Dashboard 

5.1.2 Pilot Line 

Figure 7 describes the detailed data communications and tasks in the Pilot Line. This current early 

stage involves three metal AM machines in three distributed shop floors, including an in-house 

developed EBM machine [57], an EOS M290 DMLS machine and an EOS M270 DMLS machine. 

These machines are equipped with different sensors or monitoring systems. For example, a 

backscatter electrons (BSE) detector is installed in the EBM machine to acquire electron optical 

(ELO) images of the printed layers; while the EOS M290 machine has a built-in process 

monitoring system called EOSTATE ExposureOT and MeltPool.  

An Edge DT is developed for each machine in the local shop floor. During printing, the machine 

logs and sensor signals generated by the machines and sensors are transferred to the Edge DT 

through field bus, Ethernet, WiFi, etc. The operators in the shop floors utilise the local intelligence 

provided by the Edge DT to conduct various computationally intensive tasks as listed in Figure 7. 

The main tasks of the Cloud DT for the Pilot Line are also listed in Figure 7. The interactions 

between the Edge DTs in Pilot Line and the Dashboard will be demonstrated in a representative 

application scenario in Section 5.2. 
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Figure 7. Detailed data communications and tasks in Pilot Line 

5.1.3 Post AM  

Figure 8 describes the detailed data communications and tasks in Post AM. The Post AM module 

comprises a post AM cell, an automated supply chain, a main Programmable Logic Controller 

(PLC) and an Edge DT. The post AM cell consists of a machine tool (for post machining), a furnace 

(for heat treatment), a robot arm and a laser scanner (for quality assurance). The automated supply 

chain consists of an Automated Guided Vehicle (AGV) and a robot. The main PLC is used to 

control all the devices via field bus such as EthernetIP or Profinet. ProfiSafe (a safety layer on top 

of the field bus) is implemented to ensure safe data communications among the devices. All the 

devices send handshakes to the PLC and the PLC responds with control commands of the next 

actions. 

The Edge DT downloads all the post processing tasks from the Cloud DT and sends the process 

sequences and process parameters to the main PLC and the AGV to coordinate the post AM 

processes. The AGV is controlled via the AGV interface (HTTP REST API) embedded in the Edge 

DT. Ethernet TCP is used to send and receive process data between the Edge DT and the devices. 

During post processes, computational tasks such as process simulation and real-time data 

processing are conducted with the local intelligence of the Edge DT. The process events and 

process data are stored in the local database and transferred to the Cloud DT. The main tasks of 

the Edge DT and the Cloud DT are listed in Figure 8. 
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Figure 8. Detailed data communications and tasks in Post AM 

A Virtual Reality (VR)-based DT application is developed for the Post AM shop floor as shown 

on the right of Figure 9. The application allows real-time field-level data to be communicated 

between the manufacturing facilities and their virtual models, and hence providing real-time post 

AM process monitoring functions. An Application Programming Interface (API) is developed in 

the MaterialCenter to allow data communication between the Dashboard and the DT application. 

Figure 9 shows the developed GUI in the Dashboard for post AM machine status monitoring. More 

advanced data analytics for the Post AM processes will be integrated in the Dashboard in the future. 
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Figure 9. Interaction between Dashboard and Edge DT in Post AM 

 

5.1.4 Quality Measurement 

Figure 10 describes the detailed data communications and tasks in Quality Measurement. The 

Quality Measurement module comprises product quality measurement and analysis devices, 

including an X-ray Computed Tomography (CT) scanner, a tactile Coordinate Measurement 

Machine (CMM), their control PCs and an Edge DT. The CT scanner take cross-sectional images 

of the product and send the radiographs to the control PC for image analysis and 3D reconstruction; 

while the tactile CMM measures the dimensional accuracy of the product and send the tactile probe 

data to the control PC for data processing.  

The Edge DT retrieves the measurement tasks and the related product design files from the Cloud 

DT via the Internet. All the measurement results are sent to the Edge DT and processed into product 

quality data and measurement reports corresponding to the data items in the metal AM product 

data model. Then the product quality data and measurement reports are uploaded to the Cloud DT 

to be stored and shared with the Dashboard Users.  
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Figure 10. Detailed data communications and tasks in Quality Measurement 

 

5.2 Representative application scenario: cloud-based and deep learning-enabled layer 

defect analysis 

The implementation of DT-enabled collaborative data management in MANUELA enables 

various possibilities for advanced cloud-based metal AM data analytics, thus improving the metal 

AM process performance and product quality. This sub-section briefly introduces a representative 

application scenario, i.e. cloud-based and deep learning-enabled metal AM layer defect analysis, 

to demonstrate the great advantages and potential of the proposed approach. 

The overview of the application scenario is described in Figure 11. First, the product designers and 

process planners upload the design and process parameters of the product to the cloud database 

through the Dashboard GUI. Then the operator in the shop floor retrieves the process parameters 

from the Dashboard to configure the machine and conduct the experiment. The experiment is 

conducted on the in-house developed EBM machine mentioned in Section 5.1.2. Ti-6Al-4V ELI 

(grade 23) powders are utilised to build eight cuboid samples with different scan speeds. During 

the metal AM process, the BSE detector installed in the building chamber of the EBM machine 

generates the ELO images of each printed layer. The raw ELO images are processed with image 

processing techniques in the Edge DT and then uploaded to the cloud database in the Dashboard. 

Figure 12 shows a snapshot of the cloud database in the Dashboard that contains the product 

lifecycle data uploaded by different users.  
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Data analysts download the processed ELO images from the Dashboard and use them as the 

training data to train a Convolutional Neural Network (CNN) model. The training data includes 

over 16,000 ELO images that are labelled into three categories: 1) good, 2) porous and 3) bulging, 

corresponding to three types of layer defects appeared during the metal AM process. Since the 

development of CNN model is not the focus of this application, we applied the transfer learning 

technique to train the AlexNet [58] with the ELO images and achieved 95.0% test accuracy. The 

trained CNN model is finally integrated into the Dashboard as an embedded data analytics function 

that is accessible for different users through the Internet.  

 

 

Figure 11. Overview of the cloud-based and deep learning-enabled metal AM layer defect analysis 
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Figure 12. Snapshot of the uploaded product lifecycle data in the Dashboard 
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The developed application enables both off-line product quality optimisation and on-line layer 

defect detection. On the one hand, product designers and process planners can effectively correlate 

the layer defect analysis results with specific product design features and process parameters (part 

geometry, laser power, layer thickness, scan pattern, etc.), and hence perform design and process 

optimisations to improve the product quality. On the other hand, during metal AM building process, 

the ELO image can be uploaded to the Dashboard once it has been generated and processed locally, 

then the embedded CNN model can detect the layer defects on-line.  

The on-line layer defect detection function has been developed by integrating the CNN model into 

the Dashboard’s backend. Figure 13 illustrates the designed GUIs and procedures of the on-line 

layer defect detection in the Dashboard. Briefly, it includes four steps as follows: 

• Step 1: Import ELO images to the Dashboard. 

• Step 2: Launch the embedded deep learning-enabled layer defect detection function. 

• Step 3: Display runtime status of the data analytics function and generate the prediction 

results as a .csv file. 

• Step 4: Import the predicted defect result as a child object of the ELO image in the database. 

This application allows distributed users to monitor the layer quality during the metal AM building 

process. The early identification of layer defects not only protects the recoating system from being 

damaged, but also reduces production costs in terms of material waste and production time.  

 

Figure 13. Procedures of the on-line layer defect detection in the Dashboard 
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6. Conclusions and future work 

Metal AM has been attracting a continuously increasing attention due to its great advantages 

compared to traditional subtractive manufacturing in terms of higher design flexibility, shorter 

development time, lower tooling cost, and fewer production wastes. However, the lack of process 

robustness, stability and repeatability caused by the unsolved complex relationships between 

material properties, product design, process parameters, process signatures, post AM processes 

and product quality has significantly impeded its broad acceptance in the industry. To enable 

efficient implementation of advanced data analytics, this paper proposes a novel DT-enabled 

collaborative data management approach for metal AM systems. The main contributions of this 

work are summarised as follows: 

• Proposed a novel DT-enabled collaborative data management framework for metal AM 

systems, where a Cloud DT communicates with distributed Edge DTs in different product 

lifecycle stages. 

• Proposed a metal AM product data model that contains a comprehensive list of specific 

product lifecycle data that has influence on the product quality. 

• Practically implemented the DT-enabled collaborative data management in a distributed 

metal AM system. Early development of the data management system has demonstrated 

efficient data communications between the distributed shop floors and the cloud-based data 

management system.  

• Developed a representative application scenario of cloud-based and deep learning-enabled 

metal AM layer defect analysis, which enables both off-line product design and process 

optimisation and on-line layer defect detection. 

The proposed DT-enabled collaborative data management has shown great potential in enhancing 

fundamental understanding of metal AM processes, developing simulation and prediction models, 

reducing development times and costs, and improving product quality and production efficiency. 

Moreover, the proposed DT-enabled conceptual framework is not limited to the application of 

metal AM systems. It can be treated as a generic reference framework for developing collaborative 

data management for other types of manufacturing systems. In those cases, domain-specific 

product data models need to be developed by identifying the specific product quality-related 

manufacturing data in each lifecycle stage. Efficient data communications between field-level 

manufacturing devices, the Edge DTs and the Cloud DT need to be established with consideration 

of the specific manufacturing facilities involved. Other product lifecycle stages that have not been 

considered in this work such as product usage stage and end-of-life treatment stage could also be 

included to enable various types of PLM services. 

Our future work will focus on the development and implementation of machine learning-enabled 

advanced data analytics in the DT-enabled collaborative data management system in MANUELA. 

Recent advancements of machine learning will be studied and applied for metal AM process 

monitoring, control and optimisation. Various types of machine learning-enabled closed-loop 

metal AM applications based on the DT-enabled collaborative data management system will be 

developed to improve the metal AM product quality and production efficiency. 
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