MANUELA

WEBINAR: Introduction to Additive Manufacturing (AM) using metal to medical technology

Lars Nyborg, Emmanuel Onillon, Eduard Hryha, Paul Häyhänen, Karolina Kazmierczak

Agenda

Time	Topic
09.00 - 09.05	Introduction – Karolina Kazmierczak / Paul Häyhänen (Chalmers Industriteknik)
09.05 - 09.25	Additive Manufacturing possibilities in MANUELA project – Lars Nyborg (Chalmers)
09.25 - 09.35	Presentation of a real med tech case (cranial implant) – Emmanuel Onillon (CSEM)
09.35 - 09.50	Benefits of AM, Unique Selling Points – Eduard Hryha (Chalmers)
09.50 - 10.00	Info about Open Call (MANUELA) – Paul Häyhänen (Chalmers Industriteknik)
10.00 - 10.30	Discussion, questions, open points – All

Introduction

• Aim:

- To introduce AM possibilities for medical technology through the EU project MANUELA
- MANUELA Additive Manufacturing using Metal Pilot Line offerings for companies via "Open Call"

MANUELA

Additive Manufacturing using Metal Pilot Line

Lars Nyborg, Chalmers

MANUELA consortium

www.chalmers.se

www.eos.info

www.oebsrl.it

www.csem.ch

www.new.abb.com

www.gioptiq.com

www.wtm.tf.fau.eu

www.osai-as.com

www.ceit-ke.sk

www.ri.se

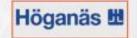
www.metas.ch

www.eneLit

www.cardiff.ac.uk

www.mscsoftware.com

www.amires.eu


www.polito.it

www.siemens.com

www.ruag.com

www.hoganas.com

www.chalmersindustriteknik.se

Why

BENEFITS OF METAL AM

How

KEY INNOVATIONS OF MANUELA

MANUELA project

TAILORED RECYCLABLE METAL POWDER

PILOT LINE DASHBOARD

WORKFLOW OPTIMIZATION AND AUTOMATION

REAL-TIME PROCESS MONITORING

QUALIFICATION AND CERTIFICATION STANDARD Post-MANUELA pilot line offering

Pre-industrial testing for specific AM products

Full manufacturing chain available

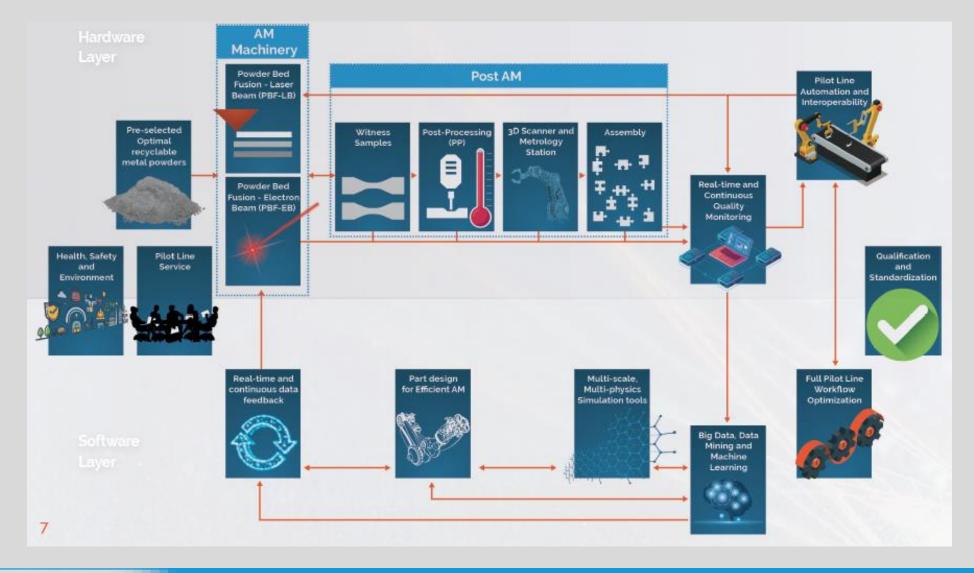
Turn-key delivery/One-stop-shop

Time to market reduction

First-time-right product design

Qualified products for new segments

New materials integration into manufacturing line


'Green' technology approved by Life Cycle Analysis

Definition of AM guidelines

Advanced quality control process

How SERVICES

How SINGLE ENTRY POINT

Chalmers Industriteknik (CIT) acts as single point of entry for the future customers to the MANUELA Pilot Line.

CHALMERS INDUSTRITEKNIK WILL PERFORM ALL FRONT ACTIVITIES INCLUDING MARKETING, CUSTOMER RELATIONSHIP, EVALUATION OF OPPORTUNITIES, REQUIREMENTS, OFFERS, MANAGEMENT AND SOURCING OF COMPLEMENTARY SERVICES, QUALITY CONTROL, INVOICING, AND CONTINUATION OF ECOSYSTEM BUILDING.

The Pilot Line will provide Open Access services according to the following flow:

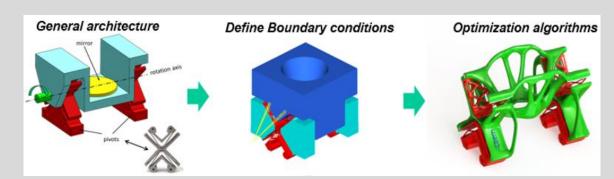
CLIENT

BRINGS IDEA AND REQUIREMENTS TO CIT CIT

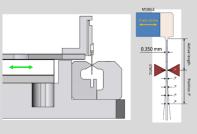
PROVIDES DESIGN, MODEL, SIMULATION, 3D PRINTED PRODUCT WITH CHARACTERIZATION, AS WELL AS OPTIMIZED PROCESS BASED ON ONLINE MONITORING AND MACHINE LEARNING BASED DATA PROCESSING.

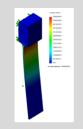
- Can act as neutral node
- Will not need to carry the infrastructure
- Can start as project office
- Can form agreements with the nodes (CSEM, POLITO, FU, CHALMERS) and others
- Possible to create a legal entity

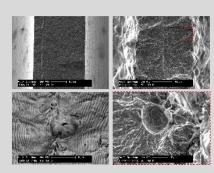
Design flow

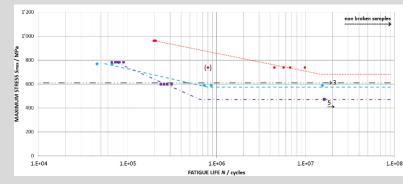

Design & Optimization

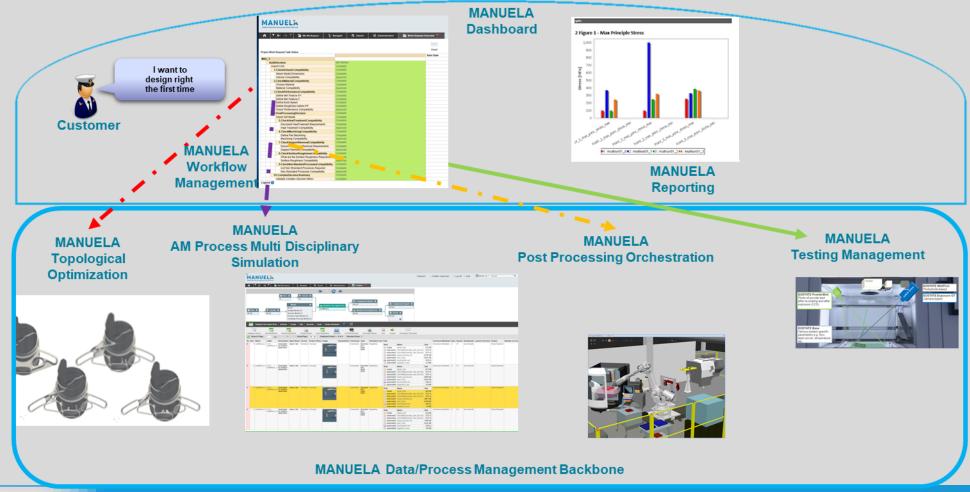
Testing






Experimental Data





Dashboard and Digital Thread Management

RESOURCES AT CHALMERS

Printer	Picture	Build Vol. (mm)	Method	Material	Software	Remarks
EOS M100 (1 unit)		Ø 100 x 95 (incl. build plate)	LPBF	Ni-base, steel, tool steel, Al- alloy, bronze, HEA	Magics	N2 or Ar
EOSM290 (1 unit)		250 x 250 x 325 (incl. build plate)	LPBF	Ni-base, steel, tool steel Stainless steel	Magics	N2 or Ar EOSTATE process monitoring
ZYYX+ (3 units)		265x225x195	FDM	ProPLA ProABS ProFLEX	Simplify3D	Z-layer: 50 um X-Y: 11 um positioning
Markforged (1 unit)		320x132x154	FDM	Nylone Onyx Glass fibre Carbon fibre Kevlar	Via Markforged web service	Z-layer: 100 um
Zortrax Inspire (1 unit)	xotex 	132x74x175	UV photo- polymerization	Resins	Z-suite	Z-layer: 25 um X-Y: 50 um

- Dedicated printers (metals, polymers and composites)
- CAM2 competence centre (hosted by Chalmers)
- Application centre under development (hosted by RISE IVF)
- Design, pre-processing and process modelling software (CAD, Magics, Ansys, Simufact,...)
- Materials and powder characterisation
- Materials testing
- Post-processing

RESOURCES AT POLITO

WHAT

Printer	Picture	Build. Vol (mm)	Method	Materials	Software	Remarks
EOS M270	***	250*250* 215	LPBF	Al-based, Ni-based, Ti-based, Steels	Magics	N ₂ or Ar
EOS M400		400*400* 400	LPBF	CoCr alloy In718 AlSi10Mg	Magics	N ₂ or Ar
Concept Laser MLab		90*90*80	LPBF	Al-based, Ni-based, Ti-based	Magics	N ₂ or Ar
Printsha rp 250		250*250* 300	LPBF	Al-based, Ni-based, Ti-based, Steels	Magics	N ₂ or Ar
Arcam A2X		200*200* 280	EBM	Ti-based Ni-based	Magics	Vacuum

- Dedicated printers (metals, polymers and composites)
- CIM4.0 Competence Center
- Design, pre-processing and process modelling software (CAD, Magics...)
- Material development (gas atomisation)
- Materials and powder characterisation
- Materials testing
- Post-processing (Heat treatments, HIP and finishing)

RESOURCES AT POLITO

WHAT

Other metal equipment

- PSI Gas atomisation system
- Quintus Hot Isostatic Pressing (HIP)
- Ovens for post processing

- SLS EOS Formiga (Nylon and Nylon matrix composites)
- FDM (ABS, PC, PLA, Nylon...)
 - 3ntr A4
 - Stratasys F370 and Dimension Elite
 - Markforged Mark Two
- DLP
- Stereolithography

RESOURCES AT FAU

WHAT

Printer	Picture	Build. Vol. (mm)	Method	Materials	Software	Remarks
Athene	ATHENE	120 × 120 × 200	ЕВМ	Ti-based alloys	Freely program- mable	Vacuum, 6 kW, BSE-detector (online monitoring)
A2		200 × 200 × 200	EBM	Ni-based superalloys; high temperature materials	Arcam & Magics	Vacuum
Q10 plus		200 × 200 × 200	EBM	Ti-based, Cu-based, Co-based alloys	Arcam & Magics	High brightness cathode: LaB ₆ (higher print resolution, long service time)
Freemelt One		130 × 200 (Ø × H)	EBM	Unlimited	Freely program- mable	Vacuum, 6 kW, LaB ₆ cathode online monitoring, small build tank

- Dedicated printers (metals, composites)
- Design, pre-processing and process modelling software (CAD, Magics...)
- Application centre (ZMP)
- Materials and powder characterisation
- Materials testing
- Post-processing (Heat treatments)

RESOURCES AT FAU

WHAT

Device	Picture	Function
FEI – Helios NanoLab 600i FIB Workstation		High-resolution <u>S</u> canning <u>E</u> lectron <u>M</u> icroscope (SEM) equipped with <u>E</u> nergy- <u>D</u> ispersive <u>X</u> -ray spectroscopy (EDX), <u>E</u> lectron <u>B</u> ack <u>S</u> catter <u>D</u> iffraction (EBSD) and <u>F</u> ocused <u>I</u> on <u>B</u> eam (FIB).
Microprobe Jeol JXA 8100		<u>E</u> lectron <u>P</u> robe <u>M</u> icro <u>A</u> nalyzer (EPMA) for the chemical analysis with high local resolution.
Frauenhofer EZRT CT Alpha system		Computed Tomography (CT) for three-dimensional imaging of complex parts.
Ovens (vacuum, inert gas) for heat treatments		FCT - Pressure sintering furnace; Gero – HTK 25 sintering furnace; Gero – LHTM 250/300 vacuum glowing furnace
Optical & laser microscopes		Carl Zeiss – Axio A1m Imager; Carl Zeiss – SteREO; Olympus – Lext OLS 4000; Carl Zeiss – Axio M1m Imager
Malvern – Mastersizer 3000	The same	Laser diffractometry for the determination of particle size distribution from 0.01 to 3500 μm
Sigmatest – Creep tester		Characterization of creep properties of metallic compounds

- Dedicated printers (metals, composites)
- Design, pre-processing and process modelling software (CAD, Magics...)
- Application centre (ZMP)
- Materials and powder characterisation
- Materials testing
- Post-processing (Heat treatments)

RESOURCES AT RISE IVF

Printers at RISE

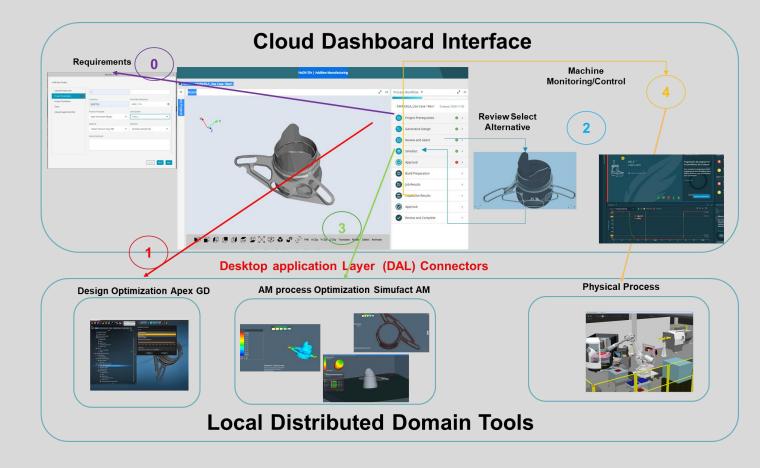
Printer	Picture	Build Vol. (mm)	Method	Material	Software
SLM125HL	SLAM	125x125x12 5 reduced by substrate plate thickness	LPBF	Ni-base, steel, tool steel, Al- alloy, bronze, maraging steel	Magics
SLM280		280 x 280 x 365 mm reduced by substrate plate thickness	LPBF	Ni-base, steel, tool steel, maraging steel	Magics
Formlabs Form 2		145 x 145 x 175 mm	SLA	Resins	From machine provider
CeraFab 7500		76 x 43 x 170 mm	LCM technology	Ceramics	From machine provider
IRBAM		Ca. 2x2x6m	Large scale FDM	Thermoplas tics, short- fiber composites	Simplify3 D & RISE developed software
An assortment of smail desktop printers			FDM		

Thank you

MANUELA

Use Case – cranial implant (CEIT)

Emmanuel Onillon, CSEM

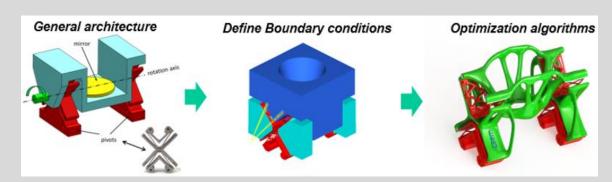

Overview

- Which tools will be available?
- What will be the design flow?
- Cranial implant device example

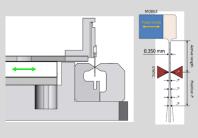
Design tools

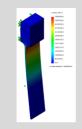
- Covers the full development process:
 - Design analysis
 - Design optimization (APEX GD)
 - Process simulation (Simufact)
 - Manufacturing following

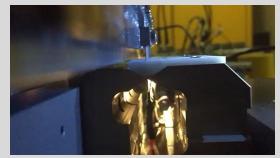
Design flow

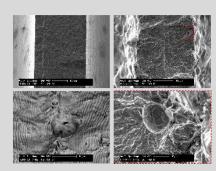

Design & Optimization

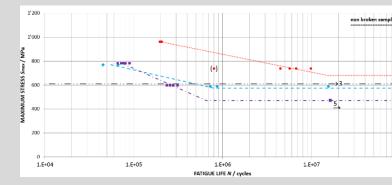
Testing

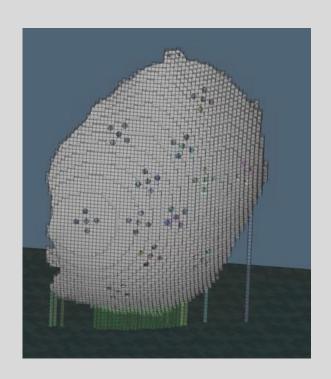


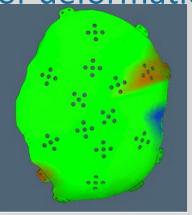





Experimental Data







Med.tech design example – cranial implant

Ti6Al4V ELI 1 mm thickness part

• Printing orientation optimization for deformation minimization

Thank you

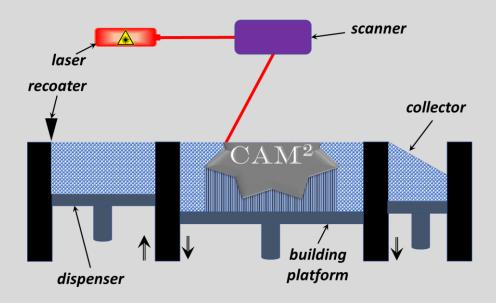
MANUELA

AM benefits – medical technology applications

Lars Nyborg, Chalmers

Additive Manufacturing

- ASTM categorizes additive manufacturing into seven process categories:
- Binder jetting
- Directed energy deposition
- Material extrusion
- Material jetting
- Powder bed fusion
- Sheet lamination
- Vat photopolymerization


Powder bed fusion

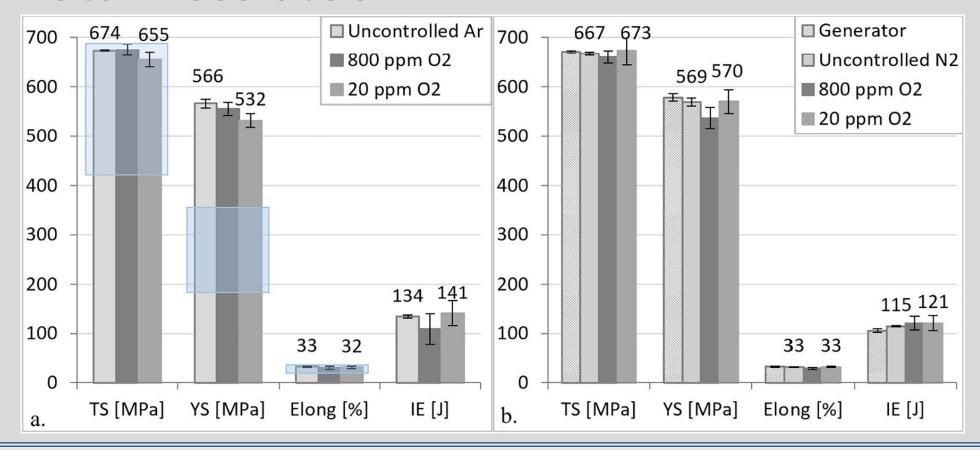
- Powder bed fusion an additive manufacturing process in which thermal energy selectively fuses regions of a powder bed
- Materials: Metal, polymer and ceramic powder
- Powder bed fusion:
 - the most growing technique
 - laser or electron beam is used to melt and fuse material powder together layer by layer
 - presence of the support structures needs to be removed after AM fabrication
 - anisotropy grain growth in the built direction
 - typically requires post-treatment heat treatment, hot isostatic pressing, etc. in order to relieve residual stresses and minimize number of defects (pores, lack of fusion, etc.).

Laser Based Powder Bed Fusion - Metal

- LB-PBF/m:
- performed under protective gas
- larger built plates 800 x 400 x 500 mm (x,y,z)
- variety of materials available
- powder reusability
- fine powder 20-80 μm is used possibility to built small channels and obtain finer surfaces
- possibility to use number of lasers simultaneously – increase productivity

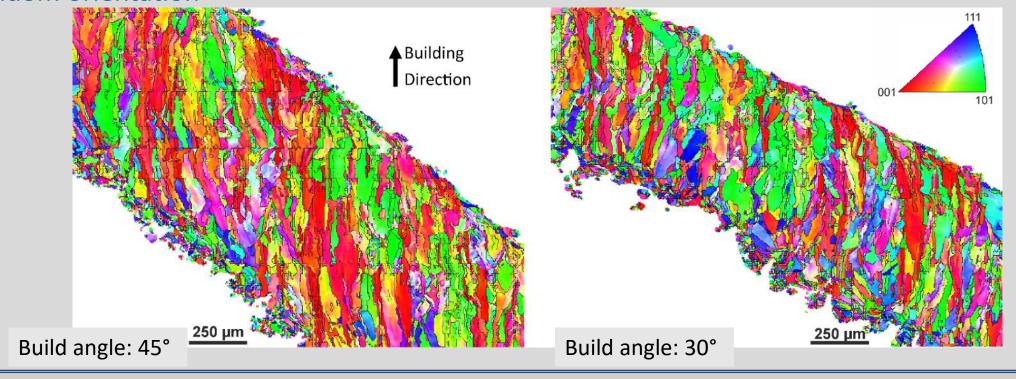
Key features of materials produced by AM

- Fine columnar microstructure
- Anisotropy in Z (build) direction
- Typically densities of ≥99.9% are reached for optimized processes



316L Stainless Steel

Properties similar or better than wrought material for established materials/processes


C. Pauzon et al., Materials and Design, V179(2019), 107873

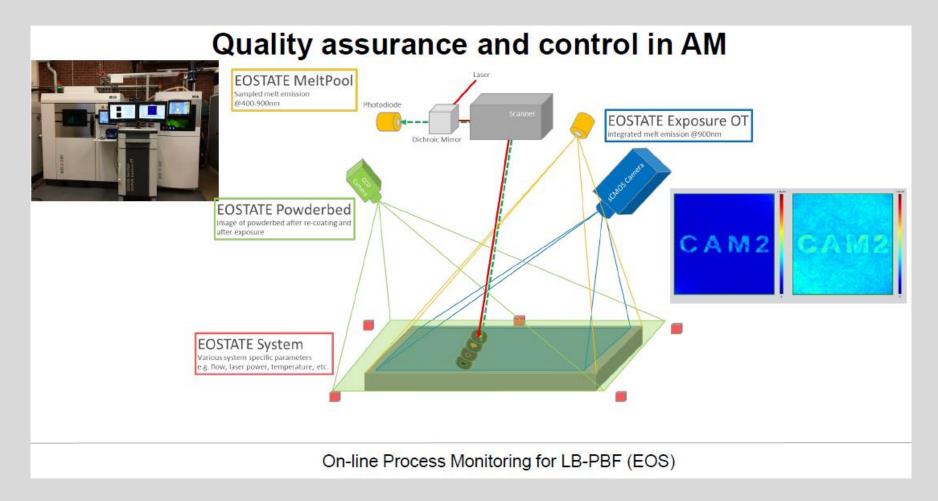
Microstructure of AM materials – LPBF-316L

- Large elongated grains in building direction
- Small grains close to the surface
- Random orientation

Design of the component taking into account AM microstructure

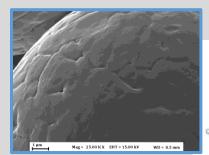
A. Leicht etc., Materials Characterisation, V143, pp.137-143

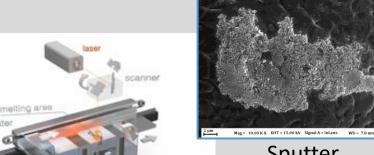
Robust Powder for Additive Manufacturing


Technology	Alloys	# of Alloys
PBF-L	Aluminum: Al-10Si-Mg, Al-12Si, Al-7Si-0.6Mg, Al-9Si-3Cu, Scalmalloy	24
	Cobalt: Co-Cr, Co-Cr-WC	
	Copper: Cu, Cu-10Sn	
	<i>Nickel:</i> IN625, IN718, IN939, HX	
	<i>Titanium:</i> Ti, Ti-6Al-4V	
	Stainless Steels: 15-5 PH, 17-4 PH, 316L SS, INVAR 36	
	Tool Steels: Maraging Steel, H13	
	<i>Miscellaneous:</i> Gold, Platinum, Silver	
PBF-EB	Cobalt: Co-Cr	4
	Nickel: IN718	
	<i>Titanium:</i> Ti, Ti-6Al-4V	

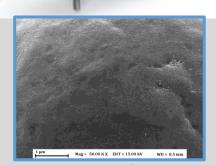
Absence of powder developed for AM!

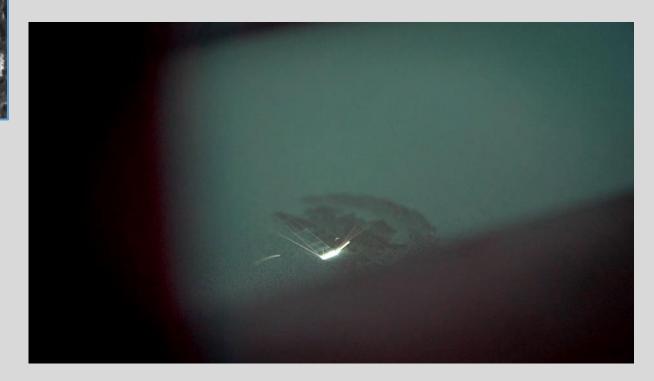
Design of the powder material for AM!


Additive Manufacturing



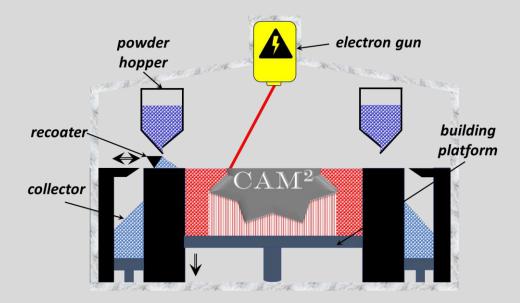
Robust Powder for Additive Manufacturing


Powder recycling - Powder Bed Fusion - Laser


Virgin

Sputter

Reused

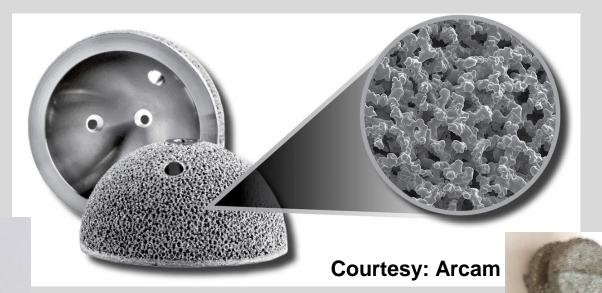


AM Material design for the robust powder recycling

Additive Manufacturing

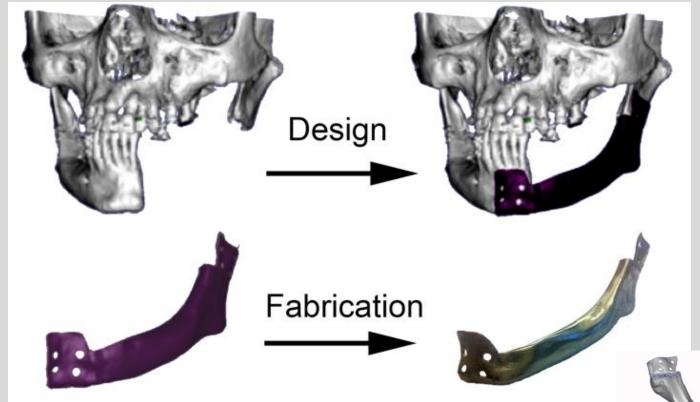
- Electron Based Powder Bed Fusion (EB-PBF):
 - requires vacuum
 - used solely for metals and alloys
 - build plate 2000*200*180 mm and up to Ø350×380 mm
 - robust processing for some materials –
 application in biomedical and aerospace
 - low number of materials available (Ti, Ti6Al4V, CoCr, In718)
 - powder bed "pre-sintering"
 - lowers recyclability of the powder
 - restricts possibility to produce small channels

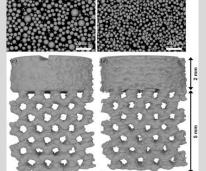
Additive Manufacturing


Manufacturing readiness level in various industry sectors Automotive Medical Aerospace Tooling 10 Full-rate production Low-rate production Pilot line capability demonstrated Capability in operational environment demonstrated Systems produced (simulated environment) Basic capabilities shown (simulated environment) Technology validated in laboratory environment Manufacturing proof of concept developed Manufacturing concept identified Basic manufacturing implications identified Examples > Fuel injection > Tooling inserts > Air ducts > Crowns and copings > Artificial hip joints > Structural elements > Formula 1 > Medical instruments > Blades components Courtesy of Roland Berger, Source: Introduction to additive manufacturing technology, EPMA

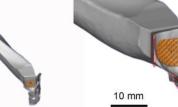
EBM technology

- Medical:
 - Standard implants
 - Customized implants





EBM technology – customized implants



Source: F. Suska et al., Journal of Oral and Maxillofacial Surgery, 2016,

EOS – medical

- Dental
- Tools
- Pre-operational
- Customized implants

Courtesy: CEIT Biomedical Engineering

Markets- Dental

- Dental sector:
 - Dental instruments \$6 Billion
 - Dental consumables \$25 Billion

DigitalMetal

Digital Metal®

Thank you

MANUELA

Open Call

Paul Häyhänen, CIT

Open Call for Business Development Cases - info

- Targeting European companies
- 10 business use cases to be selected in total
- Each case will be co-funded by the applicant and the MANUELA project at 50/50%
- Application through portal: https://apply.manuela-project.eu/
- Helpdesk and any questions about the Open Call: <u>helpdesk@manuela-project.eu</u>

Open Call for Business Development Cases - info

- Evaluation criteria
 - Concept and level of innovation
 - Impact and market potential
 - Implementation

Open Call for Business Development Cases – Schedule

- Start 1 December -20 The Call is open!
- 30 March -21 First cut off for Applications and evaluation and selection of 5 use cases for Implementation
- 30 September -21 Second and last cut off for Applications and evaluation and selection of 5 use cases for Implementation
- Winners will be notified directly, and planning of implementation will start
- 1 November –22 All cases shall be processed and closed

Open Call for Business Development Cases – info

- Implementation
 - CIT is the interface with the company and project manages the implementation of the business development case
 - User requirements, process flows charts, resource allocation, budgeting, contract will be setup for each use case
 - Planning tool will be ProjectPlace

Business Development Cases

If you are interested in the Open Call contact us already now- the Call is open!

Contact

manuela@chalmersindustriteknik.se

www.manuela-project.eu

MANUELA

