MANUELA

WEBINAR: Introduction to Additive Manufacturing (AM) using metals to SMEs

Lars Nyborg, Emmanuel Onillon, Paul Häyhänen, Karolina Kazmierczak

Time	Торіс
09.00 - 09.05	Introduction – Karolina Kazmierczak / Paul Häyhänen (Chalmers Industriteknik)
09.05 - 09.25	Additive Manufacturing possibilities in MANUELA project – Lars Nyborg (Chalmers)
09.25 - 09.35	Presentation of a real case – Emmanuel Onillon (CSEM)
09.35 - 09.50	Benefits of AM, Unique Selling Points – Eduard Hryha (Chalmers)
09.50 - 10.00	Info about Open Call (MANUELA) – Paul Häyhänen (Chalmers Industriteknik)
10.00 - 10.30	Discussion, questions, open points – All

Introduction

- Aim:
 - To introduce AM possibilities for SMEs through the EU project MANUELA
 - MANUELA Additive Manufacturing using Metal Pilot Line offerings for companies via "Open Call"

MANUELA

Additive Manufacturing using Metal Pilot Line

Lars Nyborg, Chamers

MANUELA consortium

BENEFITS OF METAL AM

Innovative and flexible product design enabling complex geometries Optimized material utilization reducing waste generation Energy cost savings Reduced lead times Enhanced product differentiation

MANUELA

KEY INNOVATIONS OF MANUELA

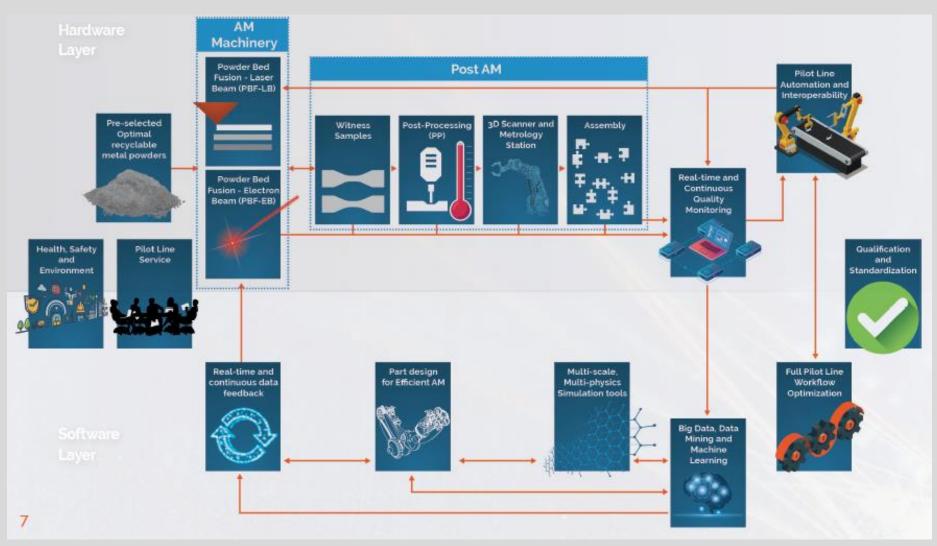
MANUELA project

TAILORED RECYCLABLE METAL POW/DER

PILOT LINE DASHBOARD

WORKFLOW OPTIMIZATION AND AUTOMATION

REAL-TIME PROCESS MONITORING


QUALIFICATION AND CERTIFICATION STANDARD Post-MANUELA pilot line offering

Pre-industrial testing for specific AM products Full manufacturing chain available Turn-key delivery/One-stop-shop Time to market reduction First-time-right product design Qualified products for new segments New materials integration into manufacturing line 'Green' technology approved by Life Cycle Analysis **Definition of AM guidelines** Advanced quality control process

How SERVICES

HOW SINGLE ENTRY POINT

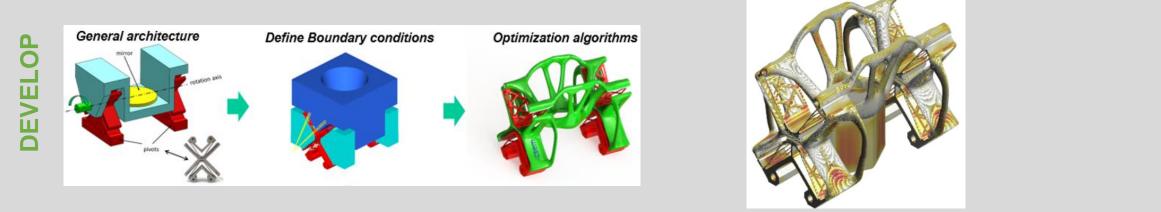
Chalmers Industriteknik (CIT) acts as single point of entry for the future customers to the MANUELA Pilot Line.

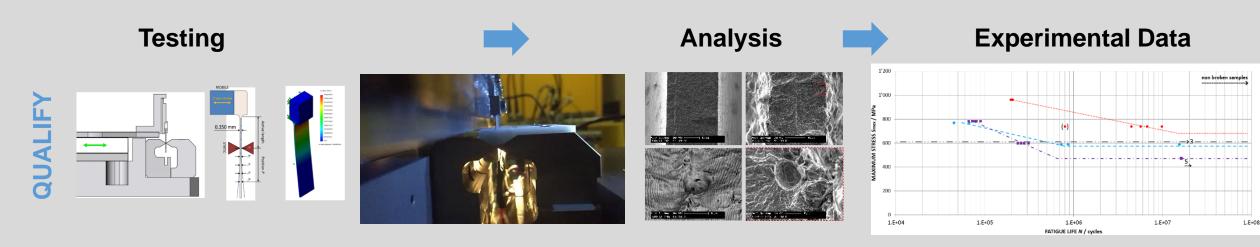
CHALMERS INDUSTRITEKNIK WILL PERFORM ALL FRONT ACTIVITIES INCLUDING MARKETING, CUSTOMER RELATIONSHIP, EVALUATION OF OPPORTUNITIES, REQUIREMENTS, OFFERS, MANAGEMENT AND SOURCING OF COMPLEMENTARY SERVICES, QUALITY CONTROL, INVOICING, AND CONTINUATION OF ECOSYSTEM BUILDING.

The Pilot Line will provide Open Access services according to the following flow:

CLIENT

BRINGS IDEA AND REQUIREMENTS TO CIT CIT


PROVIDES DESIGN, MODEL, SIMULATION, 3D PRINTED PRODUCT WITH CHARACTERIZATION, AS WELL AS OPTIMIZED PROCESS BASED ON ONLINE MONITORING AND MACHINE LEARNING BASED DATA PROCESSING.


- Can act as neutral node
- Will not need to carry the infrastructure
- Can start as project office
- Can form agreements with the nodes (CSEM, POLITO, FU, CHALMERS) and others
- Possible to create a legal entity

Design & Optimization

Process simulation

Dashboard and Digital Thread Management

MANUELA Data/Process Management Backbone

RESOURCES AT CHALMERS (Sweden)

Printer	Picture	Build Vol.	Method	Material	Software	Remarks
EOS M100 (1 unit)		(mm) Ø 100 x 95 (incl. build plate)	LPBF	Ni-base, steel, tool steel, Al- alloy, bronze, HEA	Magics	N2 or Ar
EOSM290 (1 unit)		250 x 250 x 325 (incl. build plate)	LPBF	Ni-base, steel, tool steel Stainless steel	Magics	N2 or Ar EOSTATE process monitoring
ZYYX+ (3 units)		265x225x195	FDM	ProPLA ProABS ProFLEX	Simplify3D	Z-layer: 50 um X-Y: 11 um positioning
Markforged (1 unit)		320x132x154	FDM	Nylone Onyx Glass fibre Carbon fibre Kevlar	Via Markforged web service	Z-layer: 100 um
Zortrax Inspire (1 unit)		132x74x175	UV photo- polymerization	Resins	Z-suite	Z-layer: 25 um X-Y: 50 um

- Dedicated printers (metals, polymers and composites)
- CAM2 competence centre (hosted by Chalmers)
- Application centre under development (hosted by RISE IVF)
- Design, pre-processing and process modelling software (CAD, Magics, Ansys, Simufact,...)
- Materials and powder characterisation
- Materials testing
- Post-processing

RESOURCES AT POLITO (Italy)

WHAT	Printer	Picture	Build. Vol (mm)	Method	Materials	Software	Remarks	
	EOS M270		250*250* 215	LPBF	Al-based, Ni-based, Ti-based, Steels	Magics	N ₂ or Ar	
	EOS M400		400*400* 400	LPBF	CoCr alloy In718 AlSi10Mg	Magics	N ₂ or Ar	
	Concept Laser MLab		90*90*80	LPBF	Al-based, Ni-based, Ti-based	Magics	N ₂ or Ar	
	Printsha rp 250		250*250* 300	LPBF	Al-based, Ni-based, Ti-based, Steels	Magics	N ₂ or Ar	
	Arcam A2X		200*200* 280	EBM	Ti-based Ni-based	Magics	Vacuum	

- Dedicated printers (metals, polymers and composites)
- CIM4.0 Competence Center
- Design, pre-processing and process modelling software (CAD, Magics...)
- Material development (gas atomisation)
- Materials and powder characterisation
- Materials testing
- Post-processing (Heat treatments, HIP and finishing)

RESOURCES AT POLITO

Other metal equipment

- PSI Gas atomisation system •
- Quintus Hot Isostatic Pressing (HIP) •
- Ovens for post processing

Polymer based AM systems

- SLS EOS Formiga (Nylon and Nylon matrix composites)
- FDM (ABS, PC, PLA, Nylon...)
 - 3ntr A4
 - Stratasys F370 and Dimension Elite •
 - Markforged Mark Two
- DLP

MANUELA

Stereolithography

RESOURCES AT FAU (Germany)

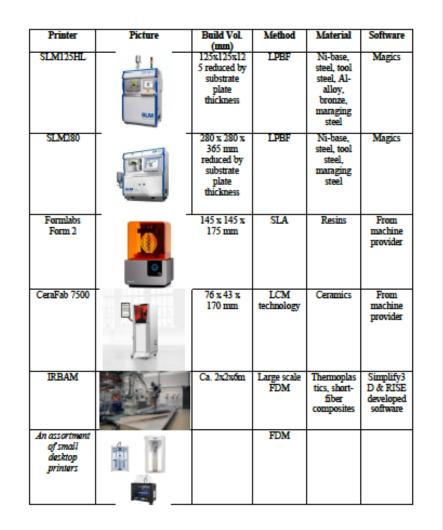
WHAT

Printer	Picture	Build. Vol. (mm)	Method	Materials	Software	Remarks
Athene	ATHENE	120 × 120 × 200	EBM	Ti-based alloys	Freely program- mable	Vacuum, 6 kW, BSE-detector (online monitoring)
A2		200 × 200 × 200	EBM	Ni-based superalloys; high temperature materials	Arcam & Magics	Vacuum
Q10 plus		200 × 200 × 200	EBM	Ti-based, Cu-based, Co-based alloys	Arcam & Magics	High brightness cathode: LaB ₆ (higher print resolution, long service time)
Freemelt One		130 × 200 (Ø × H)	EBM	Unlimited	Freely program- mable	Vacuum, 6 kW, LaB ₆ cathode online monitoring, small build tank

- Dedicated printers (metals, composites)
- Design, pre-processing and process modelling software (CAD, Magics...)
- Application centre (ZMP)
- Materials and powder characterisation
- Materials testing
- Post-processing (Heat treatments)

RESOURCES AT FAU

WHAT


Device	Picture	Function	
FEI – Helios NanoLab 600i FIB Workstation		High-resolution <u>S</u> canning <u>E</u> lectron <u>M</u> icroscope (SEM) equipped with <u>Energy-D</u> ispersive <u>X</u> -ray spectroscopy (EDX), <u>E</u> lectron <u>B</u> ack <u>S</u> catter <u>D</u> iffraction (EBSD) and <u>F</u> ocused <u>I</u> on <u>B</u> eam (FIB).	 Dedicated printers (metals, composites)
Microprobe Jeol JXA 8100		<u>E</u> lectron <u>P</u> robe <u>M</u> icro <u>A</u> nalyzer (EPMA) for the chemical analysis with high local resolution.	 Design, pre-processing and process modelling software
Frauenhofer EZRT CT Alpha system		<u>Computed</u> <u>Tomography</u> (CT) for three-dimensional imaging of complex parts.	(CAD, Magics)Application centre (ZMP)
Ovens (vacuum, inert gas) for heat treatments		FCT - Pressure sintering furnace; Gero – HTK 25 sintering furnace; Gero – LHTM 250/300 vacuum glowing furnace	Materials and powder
Optical & laser microscopes		Carl Zeiss – Axio A1m Imager; Carl Zeiss – SteREO; Olympus – Lext OLS 4000; Carl Zeiss – Axio M1m Imager	 characterisation Materials testing
Malvern – Mastersizer 3000	Úk	Laser diffractometry for the determination of particle size distribution from 0.01 to 3500 μm	
Sigmatest – Creep tester		Characterization of creep properties of metallic compounds	Post-processing (Heat treatments)

RESOURCES AT RISE IVF (Sweden)

WHAT

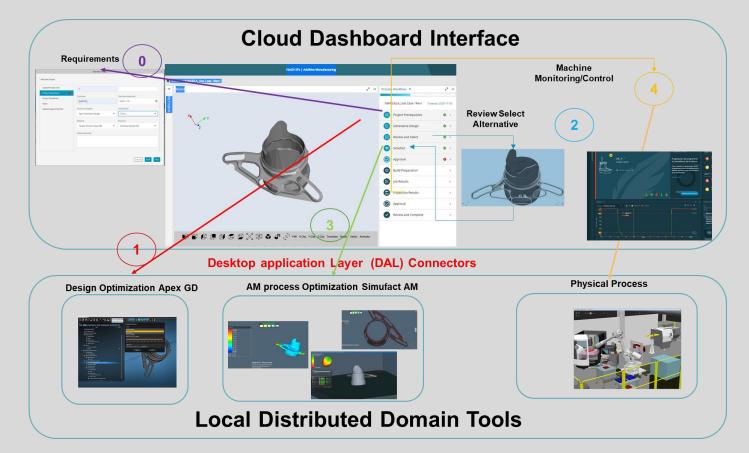
Printers at RISE

Thank you

MANUELA

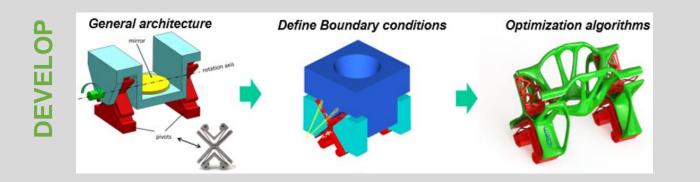
Use Case – Aerospace

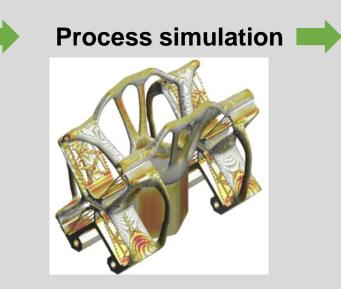
Emmanuel Onillon, CSEM

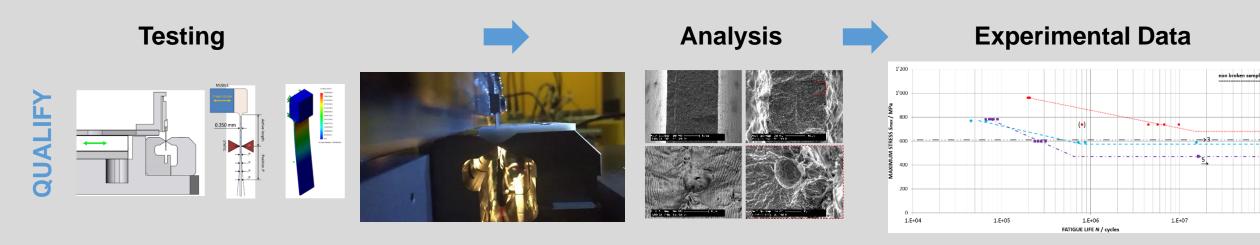

Overview

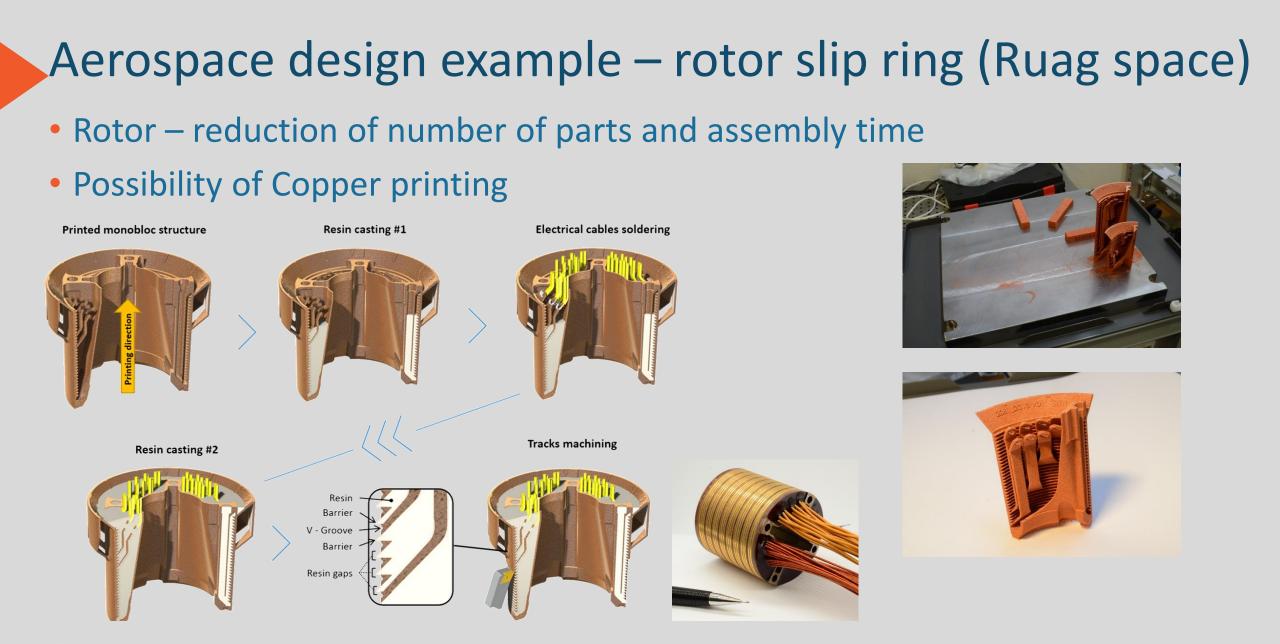
- Which tools will be available?
- What will be the design flow?
- What optimization can bring?
- Slip ring and helmet mounting device examples

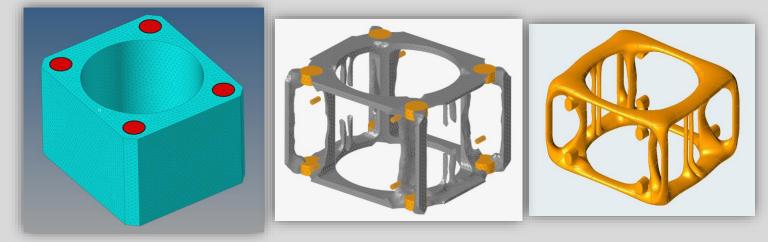
Design tools


- Covers the full development process:
 - Design analysis
 - Design optimization (APEX GD)
 - Process simulation (Simufact)
 - Manufacturing following






Design & Optimization



Aerospace design example - stator slip ring (Ruag space)

- Definition of interfaces and non-design space:
- Definition of design space (max. volume for topology optimization)

Design spaces in blue and non design spaces in red

- Problem setup: objective and constraints
- Part simulation & manufacturing (Al10SiMg)

Thank you

MANUELA

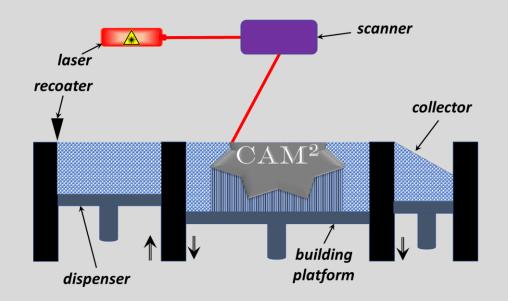
AM benefits

Lars Nyborg, Chalmers

Additive Manufacturing

- ASTM categorizes additive manufacturing into seven process categories:
- Binder jetting
- Directed energy deposition
- Material extrusion
- Material jetting
- Powder bed fusion
- Sheet lamination
- Vat photopolymerization

Powder bed fusion

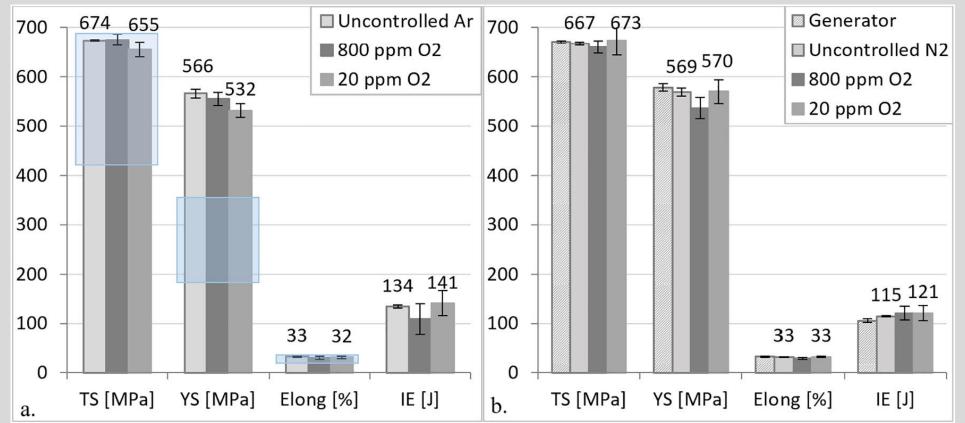

- Powder bed fusion an additive manufacturing process in which thermal energy selectively fuses regions of a powder bed
- Materials: Metal, polymer and ceramic powder
- Powder bed fusion:

NUFLA

- the most growing technique
- laser or electron beam is used to melt and fuse material powder together layer by layer
- presence of the support structures needs to be removed after AM fabrication
- anisotropy grain growth in the built direction
- typically requires post-treatment heat treatment, hot isostatic pressing, etc. in order to relieve residual stresses and minimize number of defects (pores, lack of fusion, etc.).

Laser Based Powder Bed Fusion - Metal

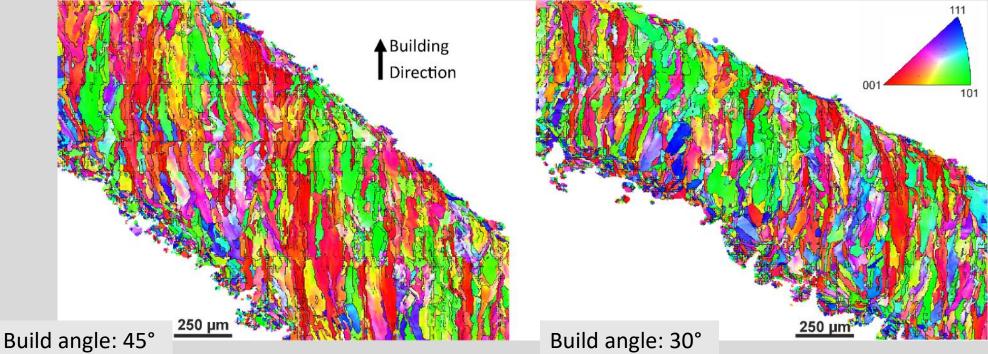
- LB-PBF/m:
- performed under protective gas
- larger built plates 800 x 400 x 500 mm (x,y,z)
- variety of materials available
- powder recyclability
- fine powder 20-80 μm is used possibility to built small channels and obtain finer surfaces
- possibility to use number of lasers simultaneously – increase productivity


Key features of materials produced by AM

- Fine columnar microstructure
- Anisotropy in Z (build) direction
- Typically densities of ≥99.9% are reached for optimized processes

316L Stainless Steel

Properties similar or better than wrought material for established materials/processes


C. Pauzon et al., Materials and Design, V179(2019), 107873

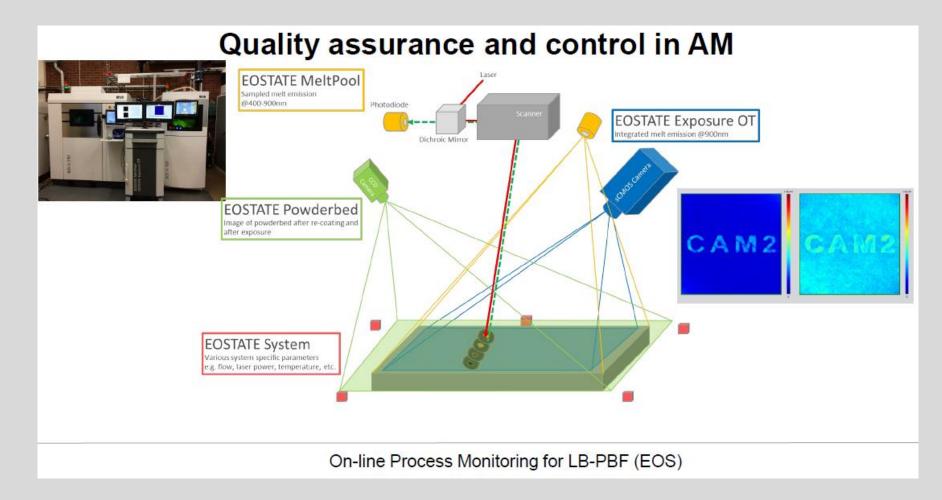
Microstructure of AM materials – LPBF-316L

- Large elongated grains in building direction
- Small grains close to the surface
- Random orientation

MANUELA

Design of the component taking into account AM microstructure

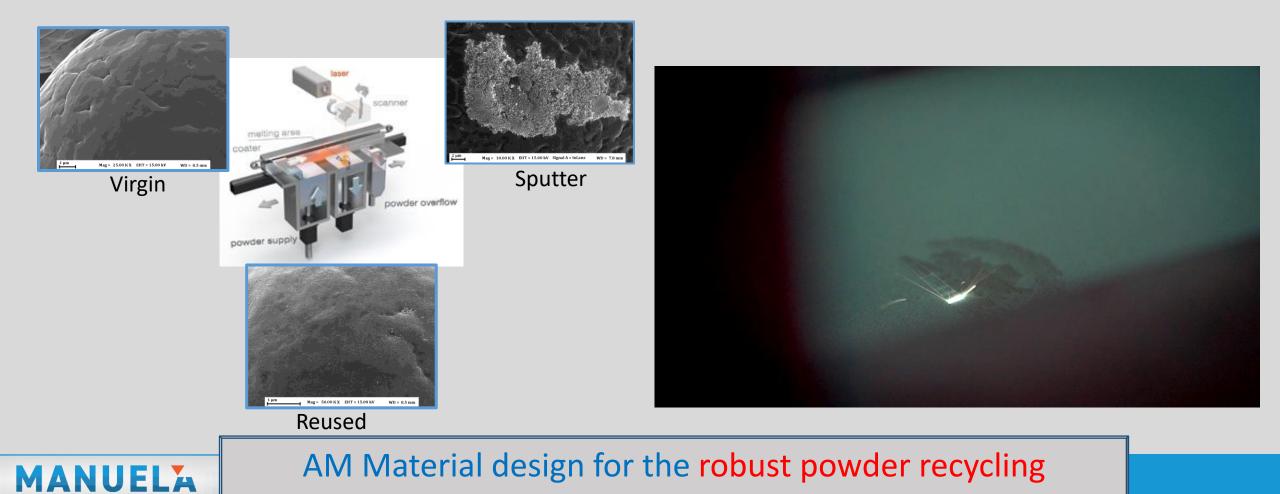
A. Leicht etc., Materials Characterisation, V143, pp.137-143


Robust Powder for Additive Manufacturing

Technology	Alloys	# of Alloys
PBF-L	Aluminum: Al-10Si-Mg, Al-12Si, Al-7Si-0.6Mg, Al-9Si-3Cu, Scalmalloy	24
	<i>Cobalt:</i> Co-Cr, Co-Cr-WC	
	<i>Copper:</i> Cu, Cu-10Sn	
	<i>Nickel:</i> IN625, IN718, IN939, HX	
	<i>Titanium:</i> Ti, Ti-6Al-4V	
	Stainless Steels: 15-5 PH, 17-4 PH, 316L SS, INVAR 36	
	Tool Steels: Maraging Steel, H13	
	Miscellaneous: Gold, Platinum, Silver	
PBF-EB	<i>Cobalt:</i> Co-Cr	4
	Nickel: IN718	
	<i>Titanium:</i> Ti, Ti-6Al-4V	
A	bsence of powder developed for AM!	
	Design of the powder material for AM!	

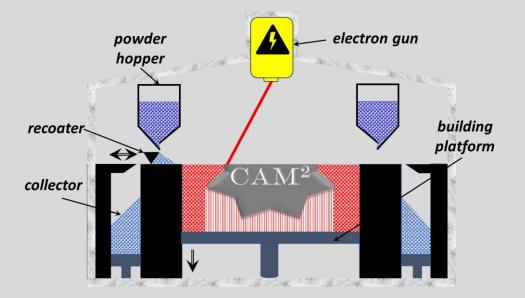
MA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 820774.


Additive Manufacturing

Robust Powder for Additive Manufacturing

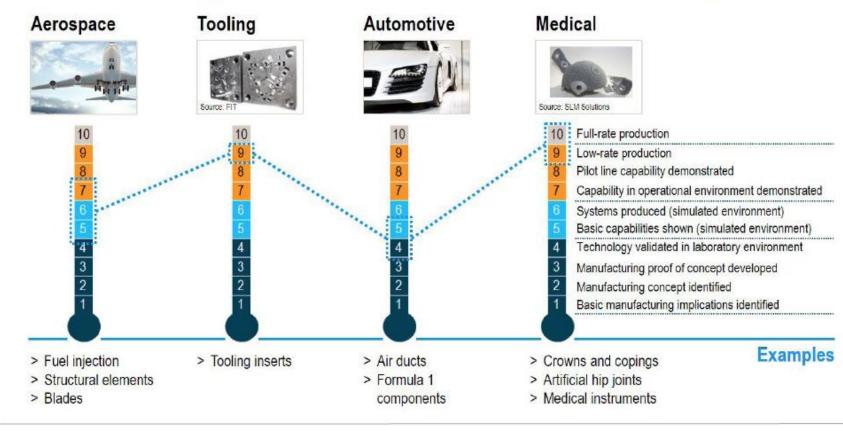
Powder recycling – Powder Bed Fusion - Laser



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 820774.

Additive Manufacturing

- Electron Based Powder Bed Fusion (EB-PBF):
 - requires vacuum
 - used solely for metals and alloys
 - build plate 2000*200*180 mm and up to Ø350×380 mm
 - robust processing for some materials application in biomedical and aerospace
 - low number of materials available (Ti, Ti6Al4V, CoCr, In718)
 - powder bed "pre-sintering"


- lowers recyclability of the powder
- restricts possibility to produce small channels

Additive Manufacturing

MANUELA

Manufacturing readiness level in various industry sectors

Courtesy of Roland Berger, Source: Introduction to additive manufacturing technology, EPMA

Markets – aerospace

Markets- consumer products/electronics

Consumer Products/Electronics:

- leading sector
- prototypes and models
 - Fashion:

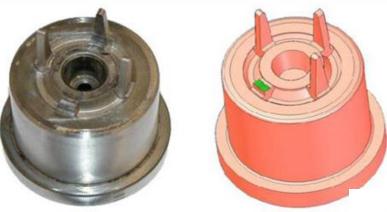
MANUELA

- Jewelry & watches
- Footwear
- Design
- Sports Equipment
- Electronics ink-jet
 - Passive components
 - Resistors
 - Capacitors
 - Inductors

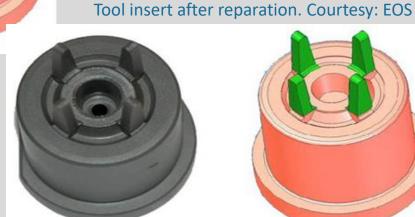
Design "Icon": Lionel T. Dean, Future Factories; Material: 18carat yellow gold (Source: CPM)

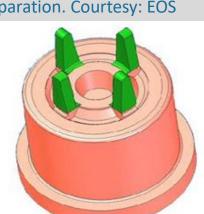
Rendered heel images using 3D Software, made from titan (Design and source: Kerrie Luft. Courtesy: EOS

Digital Metal®

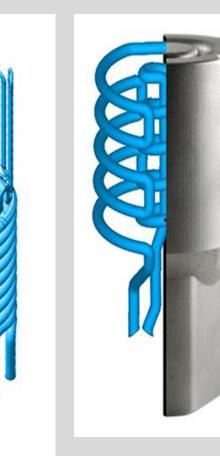


Markets- Tooling


- Tooling:


MANUELA

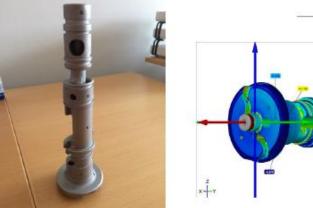
- **Injection moulding** -
- **Die casting** -
- **Tool repair**



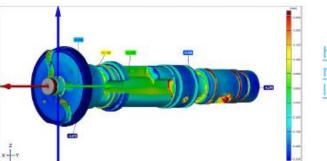
Tool insert before reparation. Courtesy: EOS

Tool insert for injection moulding made from Maraging Steel MS1. Courtesy: EOS

Tool insert for die casting. Courtesy: EOS



Additive Manufacturing


Productivity increase through tailored process development

- Printing time with standard parameters ~120 hours
- Developed process parameters: 30 hours!!!
 = full density
 - = static mechanical properties
 - + 4 times higher productivity
 - a bit worse surface finish

MANUELA

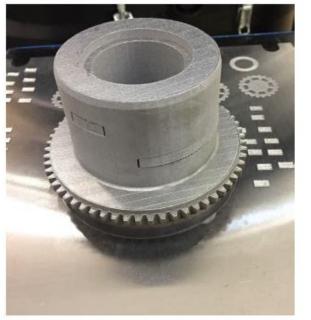
https://www.chalmers.se/en/centres/ca m2/cases/Pages/case-productivity-oflaser-powder-bed-fusion.aspx

Alex Leicht/ Lars Hammar and Marie Fischer/Chalmers

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 820774.

Additive Manufacturing

Powder development for L PBF


Control ring in 4130 steel

- Developed process for 4130 steel powder from Höganäs
 - ✓ Good printability
 - ✓ Full density

MANUELA

 Defect-free, perfect for structural components for automotive industry

Control ring, courtesy of Volvo Cars

https://www.chalmers.se/en/centres/cam2/cases/Pages/ Case-Development-of-Ferrous-Alloys-for-L-PBF.aspx

William Hearn/Chalmers

Thank you

MANUELA

Open Call

Paul Häyhänen, CIT

Open Call for Business Development Cases - info

- Targeting European companies
- 10 business use cases to be selected in total
- Each case will be co-funded by the applicant and the MANUELA project at 50/50%
- Application through portal: <u>https://apply.manuela-project.eu/</u>
- Helpdesk and any questions about the Open Call: <u>helpdesk@manuela-project.eu</u>

Open Call for Business Development Cases - info

- Evaluation criteria
 - Concept and level of innovation
 - Impact and market potential
 - Implementation

Open Call for Business Development Cases – Schedule

- Start 1 December -20 The Call is open!
- **30 September -21** Second and last cut off for Applications and evaluation and selection of use cases for Implementation
- Winners will be notified directly, and planning of implementation will start
- 1 June –22 All cases shall be processed and closed

Open Call for Business Development Cases – info

Implementation

- CIT is the interface with the company and project manages the implementation of the business development case
- User requirements, process flows charts, resource allocation, budgeting, contract will be setup for each use case
- Planning tool will be ProjectPlace

Business Development Cases

If you are interested in the Open Call contact us already now- the Call is open!

manuela@chalmersindustriteknik.se

www.manuela-project.eu

MANUELA

Q&A Discussion

